
lll£5aS£-S

' i f , - - ~ ~ - -£

- - -

D D 1 A / I T ? PROPERTY OF COMPUTEP. CENTER
K K I I V I P / College of William and Mary

Computer A ̂

iSrs • i- -

- * - , ' -." ~ m.

* ~~ — _ - - -' - - T

~ '. f* ' -

THE FORTRAN 77
REFERENCE GUIDE
IDR4029

MAN 3251-001

SPSS

FORMS

MIDAS

PRIME/POWER

Data Subsystems P

SYSTEM ADMIN.

DEBUGGER

SUBROUTINES

^

LOAD/SEG

PRIMOS
COMMANDS

Primos
Detailed Reference

DBMS SCHEMA

DBMS FORTRAN

DBMS COBOL

DBMS
ADMINISTRATOR

PL/I SUBSET G

H»fiM **

0
Data Base
Management

FORTRAN IV

RPGII

COBOL

PRIME
USER'S
GUIDE

High-Level
Language Guides

Jo

PRIMENET

DPTX

REMOTE
JOB ENTRY

Communications

t*
PMA

SYSTEM
ARCHITECTURE

System Architecture
And Assembly Language

<?
BASIC

BASIC/VM

Basic

a
NEW USERS
GUIDE TO
EDITOR/RUNOFF

Text Editing
And Formatting

PROPERTY OF COMPUTE*? CENTER
College of William and Mary

Williamsburg,, Virginia

1 I

THE
PORTRAIT 77

REFERENCE GUIDE
IDR4029

This guide documents the operation of the Prime Computer and its
supporting systems and utilities as implemented at Master Disk Revision
Level 17 (Rev. 17).

PRIME Computer, Inc.
500 Old Connecticut Path

Framingham, Massachusetts 01701

. ACKNOWLEDGEMENTS

We wish to thank the members of the documentation team and also the
non-team members, both customer and Prime, who contributed to and
reviewed this book.

Copyright © 1980 by
Prime Computer, Incorporated
500 Old Connecticut Path

Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of prime
Computer, Inc.

First Printing January 1980

All correspondence on suggested changes to this document should be
directed to:

John Mann
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, Massachusetts 01701

li

IDR4029 CONTENTS

CONTENTS

1 INTRODUCTION

PROPERTY OF COMPUTER CENTER
College of William and Mary

Williamsburg, Virginia

T I

Definitions 1-1
This Document 1-1
Related Documents 1-2
FORTRAN 77 1-3
New Features in FORTRAN 77 1-3
Prime Extensions to FORTRAN 77 1-5
F77 Restrictions 1-6
Interface to Other Languages 1-6
F77 and Prime Utilities 1-7
The Source Level Debugger 1-3
The Condition Handling Mechanism 1-9
Conventions Used in this Guide 1-9

2 FORTRAN 77 LANGUAGE ELEMENTS

Definitions 2-1
Legal Character Set 2-2
Line Format 2-3
Data Types 2-4
Type Conversion 2-14
Order of Evaluation 2-14
Program Composition 2-15

3 PROGRAM SPECIFICATION STATEMENTS

Summary of Statements 3-1
Header Statements 3-2
Data Definition Statements 3-
Data Initialization Statement
Storage Allocation Statements
Procedure Statements 3-12
Compiler Control Statements
Assignment Statements 3-14
Control Statements 3-15
Summary of Statement Syntax

4 INPUT/OUTPUT STATEMENTS

3-7
3-8

3-13

3-22

F77 Data Storage 4-1
Editing F77 Files 4-4
Increasing Maximum Record Length
Files and Programs 4-5
File Operations 4-8
File Control Statements 4-9
Device Control Statements 4-16
Data Transfer Statements 4-17
Summary of Statement Syntax 4-35

4-4

i n January 1980

CONTENTS IDR4029

5 SUBROUTINES AND FUNCTIONS

Subroutines 5-1
Functions 5-4
Secondary Entry Points 5-6
Adjustable Subprogram Elements 5-7
Arrays and Arguments 5-8
Subprogram as Arguments 5-9

6 INTRINSIC FUNCTIONS

F77 I n t r i n s i c Functions 6-1
Table of In t r i n s i c Functions 6-2
Notes for the Table of In t r ins ic Functions 6-9

7 USING THE F77 COMPILER

Introduction 7-1
Invoking the Compiler 7-1
Compiler Error Messages 7-1
End of Compilation Message 7-2
Compiler Options 7-3
Option Abbreviations 7-12

8 OPTIMIZING F77 PROGRAMS

Optimizing F77 Programs 8-1

APPENDICES

A CONVERTING FTN PROGRAMS TO F77

Methodology of Program Conversion A-l
Degrees of Program Unit Conversion A-2
Using an FTN Program Unit in an F77 Program A-2
Producing an F77-Compatible Program Unit A-3
Producing an F77-Standard Program Unit A-8

B F77 PROGRAMMING EXAMPLE

C PRIME MEMORY FORMATS FOR F77 DATA TYPES

Introduction C-l
Data Types C-2

D ASCII CHARACTER SET

Prime Usage D-l
Keyboard Input D-l

January 1980 iv

IDR4029 INTRODUCTION

SECTION 1

INTRODUCTION

DEFINITIONS

There are many versions of FORTRAN. The following names are used for
them in this guide:

FORTRAN: A mathematically oriented programming language developed
by IBM in the 1950's.

FORTRAN 66: A standardized FORTRAN, defined in the American National
Standards Institute (ANSI) publication "ANSI X3.9-1966".

FORTRAN IV: Any version of FORTRAN which is based on ANSI X3.9-1966
and contains extensions developed by a particular computer
manufacturer.

FTN: Prime FORTRAN IV

FORTRAN 77: A new standardized FORTRAN, defined in the American
National Standards Institute publication "ANSI X3.9-1978".

F77: Prime's extended version of FORTRAN 77. The F77 language
conforms fully to ANSI X3.9-1978.

Certain FORTRAN-specific terms used in this introduction are formally
defined at the beginning of Section 2.

THIS DOCUMENT

This document is a programmer's guide to the FORTRAN 77 language as
implemented on the Prime system. The reader is expected to be familiar
with some version of FORTRAN, and with programming in general, but not
necessarily with Prime computers. A one-semester course in FORTRAN
programming should provide sufficient background.

Users familiar with programming but not with FORTRAN should consult an
appropriate FORTRAN 77 textbook. Some examples are:

Katzan, Harry, FORTRAN 77, Van Nostrand
Reinhold Company, New York, 1979

Wagener, Jerrold L., Principles of FORTRAN 77 Programming, John
Wiley and Sons, New York, 1980

January 1980

SECTION 1 IDR4029

This document contains the following:

• An introduction to the F77 language.

• All the information from ANSI X3.9-1978 which a programmer needs
to program in FORTRAN 77. Various details elaborated in the
standard for the sake of completeness, but unlikely ever to be
required in practice, have been omitted to limit this guide to a
reasonable size.

• Complete information on all Prime extensions to FORTRAN 77.

• Complete information on the use of the F77 compiler

• Suggestions for optimizing F77 programs.

• An appendix on converting programs from FTN to F77.

• An appendix containing an F77 program example demonstrating the
more significant features of the language.

• Appendices detailing the ASCII character set and the storage
formats used for the F77 data types.

RELATED DOCUMENTS

The following documents contain additional information relevant to
programming in F77.

The Prime User's Guide

Nearly all the information in The FORTRAN 77 Reference Guide (this
guide) relates directly to F77. Little general information about using
the Prime computer system is presented here.

Complete instructions for creating, loading, and executing programs in
Prime FORTRAN 77 or any Prime language, plus extensive additional
information on Prime system utilities for programmers, is found in The
Prime User's Guide. The user's guide and this reference guide are
complementary documents: both are essential to the F77 programmer.

The User's Guide also contains a complete description of all Prime
documents.

The FORTRAN IV Reference Guide

The FTN language is described in The FORTRAN IV Reference Guide,
FDR3057. Those involved with converting programs from FTN to F77
should have a copy of that guide, since it contains some information
that applies to FTN but not F77. Such information is not reiterated in
this guide. See Appendix A for information on the conversion of FTN

REV. 0

IDR4029 INTRODUCTION

programs to F77.

The ANSI Standard

The definitive reference for FORTRAN 77 is "ANSI X3.9-1978 Programming
Language FORTRAN". Every installation which uses FORTRAN 77
extensively should have a copy of this standard, which may be obtained
from American National Standards Institute, 1430 Broadway, New York,
NY, 10018.

FORTRAN 77

In 1973, ANSI published "ANSI X3.9-1978 Programming Language FORTRAN."
This standard exhaustively defines a new version of FORTRAN, called
FORTRAN 77. The new FORTRAN includes and standardizes nearly all the
useful extensions to FORTRAN 66 developed by individual manufacturers.
The result is a comprehensive, well-defined, and powerful language.

Development of FORTRAN 77 continues at the ANSI level.

NEW FEATURES IN FORTRAN 77

FORTRAN 77 provides many capabilities additional to those of
FORTRAN 66. Some of them have been used in nearly all manufacturers'
versions of FORTRAN IV, but have not previously been defined in any
standard. Many of them were incorporated into FTN on the basis of
preliminary documents released by ANSI, to facilitate the eventual
conversion of FTN programs to F77.

The features available in FORTRAN 77 but not in FORTRAN 66 are as
follows:

Data Declaration Capabilities

• A statement to name the main program (PROGRAM statement)

• An implicit type-rule for default typing of data items by first
letter (IMPLICIT statement)

• Named constants (PARAMETER statement)

• A CHARACTER data type

• Arrays with up to seven dimensions

• Explicit lower bounds for array dimensions

• Array bounds with positive, zero, or negative values

• Integer constant expressions in array-bound specifications

1 - 3 January 1980

SECTION 1 IDR4029

Execution-Time Capabilities

• Operations to concatenate and extract substrings from CHARACTER
data

• Use of an array name, character substring, or implied-DO list in
a DATA statement

• Use of integer expressions (rather than just integers) for array
subscripts, selection values for computed GO TO's, and file
units referred to in BACKSPACE, ENDFILE, and REWIND statements

• Use of integer, real, or double precision expressions for
DO-loop and implied-DO index and control values

• DO and implied-DO loops that may execute zero times and have
negative incrementation values

• A block-IF statement, with subsidiary ELSE IF, ELSE, and END IF
statements, for conditional execution of blocks of statements

• Use of a format statement label in an ASSIGN statement

• Use of decimal digits or a character string in a PAUSE or STOP
statement

Subprogram Capabilities

• Multiple entry points to subprograms

• Alternate returns in subroutines

• Differentiation between external (user-supplied) and intrinsic
(built-in) functions

• Generic names for intrinsic functions

• Functions with no arguments

• More than one block data subprogram

Input/Output Capabilities

• Direct-Access Files

• List-Directed I/O

• Internal (storage-to-storage) formatted data transfer

• Statements to open and close files, and to inquire about the

REV. 0

IDR4029 INTRODUCTION

status of a file

• Additional edit-control descriptors for formatted I/O, such as
sign control, blank editing, and tabbing

PRIME EXTENSIONS TO FORTRAN 77

Unextended FORTRAN 77 already includes features to perform nearly every
programming task for which the FORTRAN language is appropriate. Prime
has avoided extending its FORTRAN 77 unnecessarily, since needless
extensions would serve mostly to reduce compatibility between F77 and
other versions of FORTRAN 77.

Prime has extended its FORTRAN 77 for three reasons:

• To provide added power and convenience of use to the language

• To take advantage of particular features of the Prime computer
system

• To provide the maximum possible compatibility with FTN, and
substantial compatibility with IBM and other manufacturers'
versions of FORTRAN IV. See Appendix A for information on the
conversion of FTN programs to F77.

Some extensions belong in two or all three categories.

The extensions of greatest interest to a new F77 user are listed below.
All F77 extensions are described in detail at appropriate places later
in this guide.

• Variable and array names may have up to 32 characters, may
contain lowercase letters, and may contain the characters "$"
and "_".

• Comments may appear anywhere in a statement. Blank lines may
appear in a program unit; they are treated as comments.

• Various synonyms for the FORTRAN data types are provided.
C0MPLEX*16, INTEGER*2, L0GICAL*2, and L0GICAL*1 data types have
been added.

• Extended intrinsics to deal with the extended data types are
provided.

• Octal constants are accepted in F77 source text.

• Data may be initialized in a type-declaration statement.

• CHARACTER and non-CHARACTER data may be equivalenced.

• All COMMON block data is static. Blank COMMON may be
initialized.

January 1980

SECTION 1 TDR4029

• IBM syntax for direct-access READs and WRITES is accepted.

• Recursion is permitted in subroutines, though not in functions.

• The B field descriptor for formatting business data (similar to
PICTURE formatting in COBOL and PL/I) is provided.

• Files can be automatically inserted into the source file by the
compiler.

There are various other extensions to allow certain FTN constructs that
are not standard in FORTRAN 77 to be accepted by the F77 compiler.
These need not be enumerated here. They are described in Appendix A.

F77 RESTRICTIONS

The segmented nature of the Prime virtual memory system imposes a few
restrictions on F77 programs. None of them are contrary to the ANSI
standard or need interfere with program design.

• The executable code (exclusive of data storage) for a program
unit may not occupy more than one segment (128K bytes)

• No program unit may have more than one segment of local static
storage. (For additional static storage, move some of the data
to a COMMON block.)

• No program unit may have more than one segment of dynamic
storage. (Make the excess static.)

• No data item in a COMMON block may be split across the boundary
between two segments. Methods for complying with this rule are
described under COMMON Statement in Section 3.

INTERFACE TO OTHER LANGUAGES

Since all Prime high-level languages are alike at the object-code
level, and since all use the same calling conventions, object modules
produced by the F77 compiler can reference and be referenced by modules
produced by the FTN, COBOL, or PLIG compilers, provided that certain
restrictions are observed:

• All I/O routines must be written in the same language

• There must be no conflict of data types for variables being
passed as arguments. For example, an INTEGER in FORTRAN 77
should be declared as FIXED BINARY in PL/I. See Appendix C for
a description of F77 data storage formats.

• Modules compiled in 64V or 321 mode cannot reference or be
referenced by modules compiled in any R mode. Modules in 64V or
321 may reference each-other if they are otherwise compatible.

REV. 0

IDR4029 INTRODUCTION

A few special restrictions apply when F77 and FTN modules reference
each-other. These are discussed in Appendix A.

F77 program units can also reference PMA (Prime Macro Assembler)
routines, and vice versa. For information, see The Assembly Language
Programmer's Guide.

F77 AND PRIME UTILITIES

Prime offers three major utility systems for use by Prime programmers.
These are:

• Multiple Index Data Access System (MIDAS)

• Forms Management System (FORMS)

• Database Management System (DBMS)

For complete information on any of these utilities, see the appropriate
reference guide. Following is a brief description of MIDAS and FORMS.
At initial release, F77 does not provide an interface with DBMS.

Multiple Index Data Access System (MIDAS)

MIDAS is a system of interactive utilities and high-level subroutines
enabling the use of index-sequential and direct-access data files at
the applications level. Handling of indices, keys, pointers, and the
rest of the file infra-structure is performed automatically for the
user by MIDAS. Major advantages of MIDAS are:

• Large data files may be constructed

• Efficient search techniques

• Rapid data access

• Compatibility with existing Prime file structures

• Ease of building files

• Primary key and up to 19 secondary keys possible

• Multiple user access to files

• Data entry lockout protection

• Partial/full file deletion utility

The interface of F77 with MIDAS is identical to that of FTN.

See: Reference Guide, Multiple Index Data Access System (MIDAS)

1 - 7 January 1980

SECTION 1 IDR4029

Forms Management System (FORMS)

The Prime Forms Management System (FORMS) provides a convenient method
of defining a form in a language specifically designed for such a
purpose. These forms may then be implemented by any applications
program which uses Prime's Input/Output Control System (IOCS),
including programs written in F77. Applications programs communicate
with FORMS through input/output statements native to the host language.
Programs that currently run in an interactive mode can easily be
converted to use FORMS.

FORMS allows cataloging and maintenance of form definitions available
within the computer system. To facilitate use within an applications
program, all form definitions reside within a centralized directory in
the system. This directory, under control of the system administrator,
may be easily changed, allowing the addition, modification, or deletion
of form definitions.

The interface of F77 with FORMS is identical to that of FTN.

See: FORMS Management System

THE SOURCE LEVEL DEBUGGER

Prime makes available a powerful interactive debugging tool, the Source
Level Debugger, which may be obtained by any Prime installation as a
separately priced item. Use of the debugger can greatly expedite and
simplify the debugging process. Major features of the debugger enable
the programmer to:

• Set both absolute and conditional breakpoints

• Request the execution of debugger commands (action list) when a
breakpoint occurs

• Execute the program step by step

• Call subroutines or functions from debugger command level

• Trace statement execution

• Trace selected variables, printing a message when their value
changes

• Print and/or change the value of any variable

• Print a subprogram call/return stack history (traceback)

• Examine the source file while executing within the debugger,
eliminating the need for hard-copy listings

See: The Source Level Debugger Reference Guide.

REV. 0

IDR4029 INTRODUCTION

THE CONDITION HANDLING MECHANISM

When an error occurs during execution of a program, PRIMOS responds by
raising a condition. For each type of error, a corresponding condition
exists.

When a condition is raised, PRIMOS activates the condition-handling
mechanism. The condition handler notes what condition exists, then
calls an error-handling routine known as an "on-unit" to deal with the
error that has occurred.

PRIMOS supplies a default on-unit for each condition. A programmer can
specify his own response to a condition by supplying an on-unit of his
own. When a condition occurs for which a programmer-supplied on-unit
exists, the actions specified in the on-unit will be taken, rather than
those specified in the PRIMOS default on-unit.

Information on the system default on-units and the method for
substituting programmer-supplied on-units is contained in The Prime
User's Guide. For complete information on the condition handler, see
The PRIMOS Subroutines Guide.

CONVENTIONS USED IN THIS GUIDE

Various conventions are used in the following sections. Their meanings
must be clearly understood by the reader.

Conventions Indicating Extensions

Every F77 extension is labeled as such in the text of this guide.

When a specific feature is explicitly described as being an F77
extension, the implication is that it is not part of FORTRAN 77. No
such feature should be used in a program which may have to run on a
non-Prime system.

When the F77 language is mentioned in general, the reference is to
Prime's extended FORTRAN 77 as a whole.

Conventions in Examples

In all examples involving dialog between the user and the system, the
user's input is underlined, and the system's output is not. For
example:

OK, attach mydirec
OK, ed oldfile
EDIT

Examples consisting only of F77 statements, with no responses from the

1 - 9 January 1980

SECTION 1 IDR4029

system, are not underlined.

COMMON // A
CALL SUB (A)
STOP
END

Typographical Conventions

WORDS-IN-UPPER-CASE

words-in-lower-case

Brackets [1

Braces { }

Parentheses ()

Ellipsis ...

Uppercase letters identify command words
or keywords. They are to be entered
literally.

Lowercase letters identify options or
arguments. The user substitutes an
appropriate numerical or text value.

Brackets indicate that the item enclosed
is optional.

Braces indicate a choice of options or
arguments. Unless the braces are
enclosed by brackets, one choice must be
selected.

When parentheses appear in a statement
format, they must be included literally
when the statement is used.

An ellipsis indicates that the preceding
item may be repeated.

REV. 0 - 10

IDR4029 ELEMENTS

SECTION 2

FORTRAN 77 LANGUAGE ELEMENTS

DEFINITIONS

In the following sections, a few terms occur repeatedly. The reader
must be clear on their exact meanings if discussions using them are to
be understood correctly. Also be sure to read the definitions at the
beginning of Section 1 for an explanation of the naming conventions
used in this book for the various versions of FORTRAN.

Term

Actual Argument:

Arithmetic Expression:

Character Expression:

Dummy Argument:

Fixed-Length
Character Expression:

Integer Expression:

Definition

A data item passed to a subprogram.
Actual arguments appear in the
argument list of a subroutine CALL
statement or a function reference.

Any expression which evaluates to
type INTEGER, REAL, DOUBLE PRE­
CISION, or COMPLEX.

A single item of type CHARACTER, or
the concatenation of any number of
such items. Substrings and
references to CHARACTER functions
are permitted. Trailing blanks are
of no significance in a character
expression.

A variable or array name appearing
in the header statement or an ENTRY
statement of a subprogram. When
the subprogram is invoked, each
dummy argument is associated with
the actual argument whose name
appears in the corresponding
position in the CALL statement or
function reference.

A character expression in which no
operand is a dummy argument with an
adjustable(*) length specification.

Any expression which evaluates to
type INTEGER, either directly or
after type conversion via the
functions INTS, INTL, or INT.

January 1980

SECTION 2 IDR4029

Integer Constant Any expression consisting only of
Expression: integer constants and named integer

constants with arithmetic operators
and parentheses.

Program unit: A main program, external function,

subroutine, or block data unit.

Segment: A 128K-byte block of address space.

Subprogram: Any program unit except a main
program.

LEGAL CHARACTER SET

Any ASCII character may appear in FORTRAN 77 character data, Hollerith
constants, and I/O files. In program source statements, the legal
characters are:

• The 26 uppercase letters:
A,B,C,D,E,F,G,H,I,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z

• The 26 lowercase letters (F77 Extension):
a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

• The 10 digits: 0,1,2,3,4,5,6,7,8,9

• These 13 special characters:

= equals
' single quote (apostrophe)
: colon
+ plus
- minus
* asterisk
/ slash
(left parenthesis
) right parenthesis
, comma
. decimal point
$ dollar sign
_ underscore (F77 extension. Backarrow on some terminals.)

• Blanks or spaces

Blanks in character and Hollerith constants and in $INSERT statements
are treated as character positions. Elsewhere in FORTRAN 77 source
text, blanks have no meaning and can be used as desired to improve
program legibility. Lowercase letters are mapped to uppercase (except
within Hollerith and CHARACTER constants) unless the program is com­
piled with the -LCASE option. Keywords must be in uppercase if -LCASE
is given. The ASCII collating sequence is used. (See Appendix D.)

REV. 0

IDR4029 ELEMENTS

LINE FORMAT

Each program line is a string of 1 to 72 characters. Each character
position in the line is called a column. Columns are numbered from
left to right starting with 1. There are three types of lines:
Comments; FORTRAN 77 statements (and their continuations); and Insert
statements.

In all line types, columns 73-80 are available for line order sequence
numbers or other identification. (Usage is optional.) These columns,
like comments, are ignored by the compiler, but are printed in the
program listing.

Comments

Comment lines are identified by the letter "C" or an asterisk in column
1. The remainder of the line may contain anything. A comment line is
ignored by the compiler, except that it is printed in the source
listing. In F77, a comment may be placed anywhere after Column 6 in a
statement line, except inside a character constant, using the format:

/* comment */

The end of the line terminates the comment and makes the */
unnecessary. A line blank through column 72 is a comment line.

Statements

In the first line of a statement, columns 1-5 are reserved for the
statement label, if any. Blanks and leading zeros are ignored. Column
6 must be a blank or a zero. Columns 7-72 contain the statement. The
statement may begin with leading blanks, to make the program easier to
read. In the continuation of a statement, columns 1-5 must be blank,
column 6 may be any character except 0 or a blank, and the statement
continuation is in columns 7-72. There may be at most 19 continuation
lines.

Inserts

F77 allows files to be inserted automatically into the source file at
compile time, via the Insert statement. An Insert statement consists
of the keyword $INSERT beginning in Column 1, followed by the pathname
of the file to be inserted. See INSERT Statement in Section 3 for more
information.

January 1980

SECTION 2 IDR4029

DATA TYPES

Six major data types exist in FORTRAN 77: Integer, Real,
Double Precision, Complex, Logical, and Character. Each of these may
exist in any of four forms: Constant, Parameter, Variable, or Array.
In addition, there are statement labels and Hollerith constants. Some
subtypes exist, differing from each other only in storage size, as
shown below.

Type

INTEGER

Bytes

2 or 4

Range

Same as for INTEGER*2 or
INTEGER*4. (See below.)

INTEGER*2
(short integer)

-(2**15) to (2**15-1)
Decimal -32768 to 32767
Octal :0 to :177777

INTEGER*4
(long integer)

-(2**31) to (2**31-1)
Decimal
-2147483648 to 2147483647
Octal
:0 to :377777777777

REAL
(REAL*4)

+ (10**-38 to 10**38)

DOUBLE PRECISION
(REAL*8)

+ (10**-9902 to 10**9825)

COMPLEX
(C0MPLEX*8)

4+4 Each component has same
range as REAL

COMPLEX*!6 8+8 Each component has same
range as DOUBLE PRECISION

LOGICAL
L0GICAL*4
L0GICAL*2
L0GICAL*1

CHARACTER
Statement Label
Hollerith

2 or 4
4
2
1

1 to 32767
2 or 4
Varies

T or F
T or F
T or F
T or F

1 to 32767 characters
1 to 99999
1 to 256 characters

The types INTEGER*2, L0GICAL*2, L0GICAL*1, and C0MPLEX*16 are F77
extensions. The names INTEGER*4, REAL*4, REAL*8, C0MPLEX*8, and
L0GICAL*4 are F77 synonyms for the corresponding FORTRAN 77 data types,
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL. These synonyms,
and the types INTEGER*2, L0GICAL*2, and L0GICAL*1, are provided for
upward compatibility of existing FORTRAN IV programs: they should not
be used in new programs.

REV. 0

IDR4029 ELEMENTS

With the exception of the CHARACTER data type, a new feature of
FORTRAN 77, the FORTRAN 66 and FORTRAN 77 data types are the same.
Since the reader is expected to be familiar with some version of
FORTRAN IV (extended FORTRAN 66), only highlights and Prime extensions
of the FORTRAN 77 data types are mentioned below. The CHARACTER type
is discussed in more detail. Each data type is illustrated with
several constants of that type.

INTEGER Data

An INTEGER data item represents an integer exactly. Integers are
always written without a decimal point. An integer constant may be
represented in decimal or octal form. (Octal form is an F77
extension.)

Decimal Octal

-204
0
8
1911

-:314 (same as :37777777464)

10
3567

F77 supports two integer subtypes: INTEGER*2 (short) and INTEGER*4
(long). When a variable is declared of type INTEGER with no *(size)
specified, or becomes type INTEGER by default, the variable will either
be INTEGER*4 if the program is compiled with -INTL (the default) , or
INTEGER*2 if it is compiled with -INTS.

Integer constants compiled under -INTL also become INTEGER*4,
-INTS, they become INTEGER*2 unless:

Under

Their magnitude lies outside the range +32767 or is greater than
:177777.

• Their representation, including leading zeroes,
than 5 decimal or 6 octal digits. Example:

contains more

30 short integer constant (under -INTS)
000030 long integer constant (always)

Within a program, long and short integers are interchangeable. They
may be mixed freely in expressions, though care must be taken that
short integers are not assigned values outside their range. When a
program communicates with pre-existing library and I/O routines,
integer arguments supplied to those routines must be of the type they
expect.

January 1980

SECTION 2 TDR4029

Some library routines require INTEGER*2 arguments. In these cases,
convert any long-integer arguments to short integer via the INTS
function (not to be confused with the -INTS compiler option, which
affects all integer data) or if appropriate compile the whole program
with -INTS. See the PRIMOS Subroutines Reference Guide, PDR3621, for
information on library subroutines.

REAL Data

A REAL data item is an approximation to a real number. REAL data is
always written with a decimal point, an exponent, or both. The decimal
point is optional if an exponent is given. Blanks may appear between
the mantissa and its exponent.

-204. -20400 E-2 0. 8.8756E4 8.8756E+4

Up to seven significant digits are retained. Exponents may range from
-38 to +38.

Real constants must fall in the type REAL range. They will not become
DOUBLE PRECISION on the basis of magnitude or number of digits.

DOUBLE PRECISION Data

DOUBLE PRECISION data is also called REAL*8. It is similar to REAL
except that twice as much storage is allocated, and "D" rather than "E"
appears in the exponent. The "D" exponent is mandatory. Examples:

123456789.D0 2.5 D-2 0.D0 -999D+21

Up to 14 significant digits are retained. The exponent may range from
-9902 to +9825.

COMPLEX Data

A COMPLEX (or C0MPLEX*8) data item is an ordered pair of real numbers.
The first number represents the real part, the second the imaginary
part. In a complex constant, or when a complex number is used in
list-directed I/O, the number appears in parentheses with its
components separated by a comma. Examples:

(l.,l.) (25E6, 331.) (.172E19, 304E-2)

The comma and parentheses must appear when a complex number is used in
list-directed I/O. They must be omitted from a complex number used in
formatted I/O.

REV. 0

IDR4029 ELEMENTS

COMPLEX*!6 Data

The C0MPLEX*16 data type is identical to COMPLEX except that
DOUBLE PRECISION numbers are used rather than REAL numbers.

LOGICAL Data

LOGICAL data items denote only the logical values TRUE and FALSE. In
programs, logical constants must be written:

.TRUE. .FALSE.

In input files, either the constants or the letters T and F may denote
the values. On output, T and F are always written.

Logical constants and logical variables lacking a *(size) specification
become either L0GICAL*4 if the program is compiled with -LOGL (the
default) , or L0GICAL*2 if it is compiled with -LOGS. A L0GICAL*1 type
is also provided for compatibility with IBM FORTRAN. This type should
not be used in new programs, because it is processed less quickly than
L0GICAL*2 or L0GICAL*4.

CHARACTER Data

The CHARACTER data type is a new feature of FORTRAN 77. It makes
Hollerith strings and the use of arithmetic variables to hold character
data obsolete. F77 continues to support the Hollerith and
arithmetic/character techniques as an aid to upward compatibility of
existing programs. New programs should use only CHARACTER data.

A CHARACTER data item is a nonempty string of characters. Each item
has a length equal to the number of characters it contains. The
character positions are numbered from 1 to LENGTH. Each character
occupies one byte.

A character constant consists of a string of characters enclosed in
single quotes. Any internal single quotes must be represented by two
consecutive single quotes. The two count as only one character
position.

'THAT'S ALL' occupies ten positions.

Declaration: The form of a CHARACTER type-statement is:

CHARACTER [*lenl cname [,cname]...

where len is an integer constant expression giving the length of the
CHARACTER variable. If *len is omitted, the length defaults to 1. In
a dummy argument in a subprogram, len may be replaced by an asterisk in
parentheses. A character item so declared will take on the length of
the corresponding actual argument in the invoking program unit.

7 January 1980

SECTION 2 IDR4029

CHARACTER entities may be initialized in a type-statement. CHARACTER
entities having different lengths may be declared in the same
type-statement. See Type-Statements in Section 3 for details.

CHARACTER parameters and arrays are declared as with other data types.

Substrings: A contiguous subset of a CHARACTER data item is known as a
substring. A substring of a variable or array element is specified:

VARNAME(L:H) or ARRAYNAME(subscr ipts)(L:H)

where L and H are integer expressions giving the lowest and highest
character positions of the desired substring. If 1 is omitted, 1 is
assumed. If H is omitted, the length of the variable is assumed.

Substrings cannot be extracted from constants and parameters. When a
substring of a constant or parameter is needed, assign the constant or
parameter to a CHARACTER variable, then extract the substring from the
variable.

Suppose CVAR = 'ABCDE'. Then:

CVAR (2:5) = 'BCDE'
CVAR (:3) = 'ABC
CVAR (4:) = 'DE'

Concatenation: Character entities may be linked together using the
concatenation operator, written '//'•

'ABC // *XYZ' = 'ABCXYZ'
'Z' // CVAR (2:5) = 'ZBCDE'

Assignment: Character entities may be assigned using the "=" sign.
Where lengths do not match, truncation or padding with blanks takes
place on the right. Undefined positions on either side of positions
assigned by substring remain undefined.

In FORTRAN 77, no position may act as both source and destination in a
substring assignment. F77 relaxes this restriction. This extension
must be used carefully, because the source string is not copied before
execution of a substring assignment. The assignment may therefore
encounter its own effects partway through execution.

If K and Q are CHARACTER*5:

K = 'A' // 'B' // 'C /* K = 'ABCbb'
Q (3:4) = K (2:3) /* Q = '??BC?'
K = K // K /* K = 'ABCbb'
K (1:3) = K (2:4) /* K = 'BCbbb'

Comparison: Character entities may be compared using the relational
operators. The ASCII collating sequence is used. (See Appendix D.)

IF ('ABX' .LT. (CVAR (2:3)//'ZQ')) GOTO 100

REV. 0 2 - 8

IDR4029 ELEMENTS

Intrinsic Functions: Various intrinsic functions exist to provide
services related to CHARACTER data items. They are described in
Section 6.

Input/Output; I/O of CHARACTER data is similar to I/O for the other
data types. Formatted CHARACTER I/O uses the "A" field descriptor.
See Section 4.

Statement Labels

Statement labels exist in three forms:

• Any statement may have a label between 1 and 99999 affixed to
it, in columns 1-5 of its first line.

• An integer variable becomes a statement label variable when the
integer variable is set to a label value by an ASSIGN statement.
The variable may then be used in an assigned GO TO. See the
ASSIGN and ASSIGNED GO TO statements in Section 3.

• A statement label prefixed by the character "*" or "$" becomes a
statement label constant. (Use of "$" for this purpose is an
F77 extension, and is considered an obsolete technique.) One or
more such constants may be placed in the argument list to a
subroutine, permitting the subroutine to return to one of the
lines whose label it has received, rather than to the line
following the subroutine call. See Section 5.

Hollerith Constants

Hollerith constants are accepted in F77 to aid upward compatibility of
FORTRAN IV programs. This type is obsolete. Use CHARACTER constants
and variables when writing new programs.

OPERANDS

Operands are those elements which are manipulated by the program. Four
types of operand exist in FORTRAN 77: Constants, Parameters,
Variables, and Arrays.

Constants

Constants exist for every data type. In a program, a constant appears
as a literal representation of the desired value. The compiler
determines the type of the constant from its appearance, its context,
and the compiler options in effect. Appropriate storage is allocated,
and the value is stored in it.

The correct form for each type of constant appears in the previous

2 - 9 January 1980

SECTION 2 IDR4029

subsection under the appropriate data type.

Parameters

Parameters are named constants, and may be of any data type. They are
functionally similar to constants, but are referenced by the name
assigned to the value in a PARAMETER statement, rather than by a
literal occurrence of the value. Parameters may not appear in FORMAT
statements. Parameter names follow the same rules as variable names.

Do not confuse parameters with arguments to subroutines. In FORTRAN 77
the term "parameter" denotes only a named constant.

Variables

Variables are data items whose values may be assigned, and subsequently
altered, during program execution.

FORTRAN 77 variable names contain from 1 to 6 characters. In F77,
variable names may have from 1 to 32 characters. Character 1 must be
alphabetic; characters 2-32 (if any) must be alphanumeric, or the
characters "$" or "_". Users are discouraged from using "$" in their
variable names because this character is used extensively in
Prime-supplied software names, where it serves to implement a system of
naming conventions.

When no type is explicitly declared, a variable whose name begins with
the letters I through N becomes type INTEGER, and a variable whose name
begins with A-H or 0-Z becomes type REAL. See Section 3 for
instructions on how to override this implicit convention, and how to
specify DOUBLE PRECISION, COMPLEX, CEARACTER, and LOGICAL types.

Arrays

Arrays are ordered, multidimensional sets of variables. An array is
declared in a DIMENSION, COMMON, or type-statement such as:

DIMENSION array declarator [,array declarator]...

where each "array declarator" has the form;

ANAME (dl[,d2]...[,d7])

in which ANAME is the name of an array (same rules as for a variable
name) , and each dn has the form:

[Ln:]Hn

Ln is the lower subscript bound, and Hn is the upper subscript bound,
for dimension n. There may be at most seven dimensions. If Ln is
omitted, it is assumed to be 1.

REV. 0 2 - 1 0

IDR4029 ELEMENTS

Example:

INTEGER ARR(-3:3,7,0:204,-207:-91,81)

In a main program, Ln and Hn must be integer-constant expressions. For
a dummy argument array in a subprogram, they may be integer expressions
(for an adjustable array), and the upper bound of the last dimension
may be given as an asterisk (for an assumed-size array). See Section 5
for details. Arrays are stored by columns: the leftmost subscript
varies most rapidly when the array is accessed in storage order.

Referencing Arrays

Array references have the form:

ANAME (S1[,S2]...[,S7])

where each Sn is a subscript expression.

A subscript expression is any legal FORTRAN 77 integer-valued
expression. It may contain constants, variables, function references,
intrinsic references, and other array references.

Note

Non-integer data items are not allowed in subscript
expressions. Convert any such items to integers using the
appropriate conversion function (IDINT, IFIX, INT, etc.)

An array longer than one segment (128K bytes) must be stored in
a COMMON block. An array shorter than one segment should not
be stored in a COMMON block longer than one segment. See
ARRAYS AS ARGUMENTS in Section 5 for more information. See the
COMMON Statement in Section 3 for a restriction on the
placement of data items (including arrays) in a COMMON block.

Evaluation of a function reference in a subscript expression
must not alter any other elements of the subscript expression
list, either directly or by altering arguments used in other
function references.

Caution

When an array that crosses or may cross a segment boundary is
passed as an argument to a subprogram, special action is
necessary. See ARRAYS AS ARGUMENTS in Section 5.

- 11 January 1980

SECTION 2 IDR4029

OPERATORS

Operators modify an operand, or combine or concatenate two operands.

Logical Operators

FORTRAN 77's logical operators are: .NOT., .AND., .OR., .EQV.,
and .NEQV.. In the following, P and Q are of type LOGICAL.

.NOT.: (.NOT.Q) negates the value of Q.

Q .NOT. Q

.TRUE. .FALSE.

.FALSE. .TRUE.

.AND.: (P .AND. Q) is the logical ANDing of P and Q
(set intersection)

Q

.TRUE.

.FALSE.

P

.TRUE.

.TRUE.

.FALSE.

.FALSE

.FALSE.

.FALSE.

.OR.: (P .OR. Q) is the logical non-exclusive ORing of P and Q.
(Set union)

Q

.TRUE.

.FALSE.

P

.TRUE.

.TRUE.

.TRUE.

.FALSE.

.TRUE.

.FALSE.

.EQV.: (P .EQV. Q) is the logical equivalence of P and Q.

P

Q .TRUE. .FALSE.

.TRUE. .TRUE. .FALSE.

.FALSE. .FALSE. .TRUE.

REV. 0 2 - 1 2

IDR4029 ELEMENTS

.NEQV.: (P .NEQV. Q) is the same in

.EQV. Q)). It acts as an exclusive or.
effect as (.NOT. (P

Q

.TRUE.

.FALSE.

P

.TRUE.

.FALSE.

.TRUE.

.FALSE.

.TRUE.

.FALSE.

Arithmetic Operators

**

*

/
+
-
=

Relational Operators

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

Character Operator

Exponentiation
Multiplication
Division
Addition
Subtraction or Unary Minus
Assignment

Less than
Less than or equal to
Equal to
Not equal to
Greater than
Greater than or equal to

// Concatenation

Operator Priority

**

* or /
+ or -
//

.LT. .LE. .EQ.

.NE. .GT. .GE,

.NOT.

.AND.

.OR.

.EQV. .NEQV.

Exponentiation
Unary Minus
Multiplication or division
Addition or subtraction
Concatenation

Relational operators
(All have same priority.)

Logical negation
Logical intersection
Logical union
Log ical equivalence/nonequivalence

- 13 January 1980

SECTION 2 IDR4029

TYPE CONVERSION

Logical operators may combine logical operands of differing storage
lengths, and arithmetic operators may combine operands of differing
numeric types. The type of the result in such cases depends on the
types of the operands.

Logical Conversion

The storage length of the result when logical data of differing lengths
are combined is the longer of the two lengths. Example:

(L0GICAL*2 .AND. L0GICAL*4) is L0GICAL*4

Arithmetic Conversion

The type of the result when differing numeric types are combined will
be that of the operand having the higher type in the following list:

C0MPLEX*16
CCMPLEX*8
DOUBLE PRECISION
REAL
LONG INTEGER
SHORT INTEGER

For Example REAL + SHORT INTEGER is a REAL

Special Case: To prevent loss of precision, the result-type when
C0MPLEX*8 and DOUBLE PRECISION data are combined will be C0MPLEX*16.
(F77 extension).

Caution

When long integers are converted to reals, there may be a loss
of precision. No error message will be generated, but
incorrect results may occur.

ORDER OF EVALUATION

When operators having the same priority appear successively in an
expression, the value of the expression may depend on the order in
which the operators are processed. The order is sometimes different in
different programming languages, and in different compilers for the
same programming language. This variability is a common cause of
programming errors.

REV. 0 2 - 1 4

TDR4029 ELEMENTS

In F77, multiple exponentiations are processed from right to left:
A**B**C = A**(B**C). For the other operators, multiple occurrences of
operators of equal priority are generally processed left to right:
A*B/C = (A*B)/C. However, the compiler takes advantage of groupings of
elements (in accordance with mathematical rules) to optimize its
output. For example, given A*B - A*C the compiler may evaluate A*(B-C)
instead. Consequently, evaluation may sometimes not be strictly left
to right.

The compiler always respects the integrity of parentheses. For
example, (A*B) - (A*C) would be evaluated exactly as written.
Expressions within parentheses are always evaluated before expressions
outside them. For example, A*(B/C) will have its quotient evaluated
first. Where evaluation order is critical, use parentheses to
eliminate any ambiguity.

Where multiple references to functions occur in an expression, the
compiler may evaluate them in any order. No function reference may
alter any other value in the expression, either directly or by altering
arguments used in other function references.

PROGRAM COMPOSITION

Each program unit consists of a number of program lines. Program lines
are grouped and ordered as shown in Table 2-1. Vertical boundaries in
the table denote classes of statements that can be interspersed.
Horizontal boundaries denote classes of statements that cannot be
interspersed. F77 statements are discussed in Section 3 and Section 4.

Any number of program units may be present in a single file. Only
comments may appear between the END statement of one program unit and
the header statement of the next.

In F77, no block of executable code can cross a segment boundary.
Therefore, no program unit may produce more than 128K bytes (one
segment) of code. Rarely if ever will a program unit be any larger
than this; one that is must be broken up. Program data is kept in
separate data segments, and hence does not compete for space with the
executable code.

The names of F77 program units may not be more than 8 characters long.
Additional characters will be ignored and a warning message printed.

- 15 January 1980

SECTION 2 IDR4029

Table 2-1. FORTRAN 77 Program Composition

COMMENT
LINES

PROGRAM, FUNCTION, SUBROUTINE, OR
BLOCK DATA STATEMENT

FORMAT
AND
ENTRY
STATEMENTS

PARAMETER
STATEMENTS

DATA
STATEMENTS

IMPLICIT
STATEMENTS

OTHER
DATA
DEFINITION
STATEMENTS

STATEMENT
FUNCTION
STATEMENTS

EXECUTABLE
STATEMENTS

END STATEMENT

REV. 0 16

IDR4029 STATEMENTS

SECTION 3

PROGRAM SPECIFICATION STATEMENTS

All FORTRAN 77 statements concerned with specifying a FORTRAN program,
as distinct from specifying its I/O interface, are discussed in this
section. Because of the complexity of FORTRAN I/O and the large number
of new features added in FORTRAN 77, I/O statements are dealt with
separately in Section 4.

SUMMARY OF STATEMENTS

FORTRAM program specification statements are listed below with their
functional categories. All *(length) suffixes to statements other than
the CHARACTER data definition statement, and all Compiler Control
statements, are F77 extensions.

Header Statements

PROGRAM
SUBROUTINE
FUNCTION
ENTRY (Secondary header)
BLOCK DATA

Data Definition Statements

IMPLICIT
INTEGER [{*2,*4}]
REAL [{*4,*8}]
DOUBLE PRECISION
COMPLEX [{*8,*16}]
LOGICAL [{*1,*2,*4}]
CHARACTER [*n]
DIMENSION
PARAMETER

Data Initialization Statement

DATA

Storage Allocation Statements

COMMON
EQUIVALENCE
SAVE

January 1980

SECTION 3 IDR4029

Procedure Statements

CALL
EXTERNAL
INTRINSIC
Statement Function

Compiler Control Statements

NO LIST
LIST
$INSERT

Assignment Statements

Arithmetic assignment
Logical assignment
Character assignment

Control Statements

DO
CONTINUE
ASSIGN
unconditional GO TO
computed GO TO
assigned GO TO
arithmetic-lF
logical-IF
block-IF
PAUSE
RETURN
STOP
END

HEADER STATEMENTS

Header statements define primary and secondary entry points to program
units, and perform other functions as indicated. The name in a header
statement must be constructed according to the rules for variable
names. See Section 2.

The names of F77 program units must not be more than 8 characters long.
Additional characters will be ignored, and a warning message printed.

REV. 0

IDR4029 STATEMENTS

PROGRAM Statement

PROGRAM name

The PROGRAM statement gives a name to a main program. It is not
required. If present, it must be the first statement of the main
program.

The name must not duplicate the name of any common block or subprogram,
or of any data item in the main program.

When a PROGRAM name has been specified, that name will appear in any
SEG load map in place of " $ W , and will be used by the Symbolic
Debugger in place of "$MAIN".

SUBROUTINE Statement

SUBROUTINE name [([argument [,argument]...])]

Declares a program unit to be a subroutine, assigns its name, and
specifies its dummy arguments. See Section 5.

FUNCTION Statement

[type] FUNCTION name ([argument [,argument] ...])

Declares a program unit to be a function, assigns its name and type,
and specifies its dummy arguments. If no type is declared in the
FUNCTION statement, the typing can be done in an ordinary
type-statement. If no type is declared anywhere, default typing will
occur. An IMPLICIT statement in a function affects default typing of
the function name. See Section 5 for more information.

ENTRY Statement

ENTRY entry-name [([argument [,argument]...])]

Specifies a secondary entry point in a subprogram, assigns its name,
and specifies its dummy arguments. See Section 5.

BLOCK DATA Statement

BLOCK DATA [name]

statements

END

January 1980

SECTION 3 TDR4029

The BLOCK DATA statement designates and optionally names a BLOCK DATA
subprogram. A program may contain any number of such subprograms.

A BLOCK DATA subprogram initializes data items in named or blank COMMON
blocks. Initialization of blank COMMON is an F77 extension. The
entire block must be specified in a COMMON statement in the subprogram
if any part of it is to be initialized. Only COMMON, EQUIVALENCE,
DIMENSION, DATA, IMPLICIT, PARAMETER and type-statements may appear.

DATA DEFINITION STATEMENTS

These statements create and control the properties of the variables,
arrays, and parameters which constitute the data elements of a program.

FORTRAN 77 automatically assigns types to all variables, parameters,
arrays, and functions that do not appear in type-statements. The
FORTRAN 77 language default is as follows: if the symbol's first
character is I through N (inclusive), the symbol is typed as integer;
all others (A-H, 0-Z) are typed as real. The default integers are long
integers unless the program is compiled with the short integer option
-INTS. See Section 2 and Section 7. The type of an intrinsic function
is predefined, and does not depend on this implicit typing mechanism.

IMPLICIT Statement

IMPLICIT type (list) [,type (list)]...

The IMPLICIT statement allows the programmer to override the language
convention for default data-typing by first letter. Each type is a
data type such as REAL*4, COMPLEX, etc. Each list lists the letters
which will cause default to that type. Letters may be separated by a
comma, or an inclusive group of letters may be indicated with a dash.

Symbols not typed in a type-statement or by a default specified in an
IMPLICIT statement will be typed by the FORTRAN 77 language default.
Example:

IMPLICIT DOUBLE PRECISION (A,N,0,P-Z), LOGICAL (B), CHARACTER*3 (M)

First letter of symbol Type

A, or N through Z Double Precision
B Logical
C through H Real
I through L Integer
M Character*3

If used, the IMPLICIT statement must be the first statement of a main
program (second if a PROGRAM statement exists), or the second statement
of a subprogram. IMPLICIT affects all symbols not otherwise typed.
This includes dummy arguments in the header statement of a subroutine
or function, and function names which are not explicitly typed. The

REV. 0

IDR4029 STATEMENTS

user should take care to make sure that these implicitly typed
arguments will be of the proper data type. IMPLICIT typing does not
affect intrinsic functions.

Type-Statements

type v [,v]...

The type-statement allows override of the implicit type assignments of
symbol names which would be done either by IMPLICIT or by language
default. A data item may be initialized in a type-statement.

The word type is replaced by one of the data-type specifications:

INTEGER
INTEGER* 2
INTEGER*4

REAL
REAL*4 (same as REAL)
REAL*8 (same as DOUBLE PRECISION)

DOUBLE PRECISION (same as REAL*8)

COMPLEX
C0MPLEX*8 (same as COMPLEX)
COMPLEXES

LOGICAL
LOGICAL*1
L0GICAL*2
L0GICAL*4

CHARACTER (same as CHARACTER*!)
CHARACTERS

Where n (in CHARACTER*n) is an integer constant, an integer constant
expression in parentheses, or an asterisk in parentheses (for
adjustable dummy argument length in a subprogram), and the v's are a
list of variable names, parameter names, array names, function names,
or array declarators.

The types INTEGER*2, COMPLEX*16, L0GICAL*1, and L0GICAL*2 are F77
extensions. The names INTEGER*4, REAL*4, REAL*8, C0MPLEX*8, and
L0GICAL*4 are F77 synonyms for the corresponding FORTRAN 77 data types
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and LOGICAL. These synonyms
are provided for upward compatibility of existing FORTRAN IV programs:
they should not be used in new programs.

The storage length given in the type will ordinarily apply to all the
data items in the statement. In F77, lengths may also be specified for
data items singly. When both a single and a general length
specification are given, the single specification takes precedence.

January 1980

SECTION 3 IDR4029

For example:

INTEGER A*4, B*2
INTEGER*4 C, D*2, E
CHARACTER*50 Fr G*100, H, I, J*l

f
is equivalent to:

INTEGER*4 A,C,E
INTEGER*2 B,D
CHARACTER*1 J
CHARACTER*50 F,H,I
CHARACTER*100 G

Recognition of synonymous data types is provided to ease conversion of
existing programs to F77. INTEGER will normally default to INTEGER*4
(long integer) unless the program is compiled with the -INTS option, in
which case it will default to INTEGER*2 (short integer) . LOGICAL will
default to L0GICAL*4 unless the program is compiled with -LOGS, in
which case it will default to L0GICAL*2. See Section 7 for compiler
option information.

To initialize a data item in a type-statement, enclose the desired
value between slashes and insert it immediately after the data item
name. The rules and syntax of the DATA statement apply, except that
each initializing value must follow its data item immediately, and not
all the items need be initialized. Example:

INTEGER A/5/,B,C,D,E(2)/l,2/,F(5)/5*10/

Any initialized data item will be placed in static storage.

DIMENSION Statement

DIMENSION array declarator [,array declarator]...

Where each array declarator is as described under ARRAYS in Section 2.

A DIMENSION statement declares a symbolic name typed in a
type-statement, or by default, to be an array, and sets the number of
dimensions and bounds of each dimension of the array.

A list of arrays can be declared and typed in one statement by
replacing the keyword DIMENSION above with any data-type specifier.

REV. 0

IDR4029 STATEMENTS

PARAMETER Statement

PARAMETER (p=c [,p=c]...)

The p's are symbolic names previously typed in any standard way, or by
default. Each c is a constant expression of a type appropriate to the
corresponding p. A constant expression consists only of constants,
parameters, constant expressions in parentheses, and appropriate
operators. Any parameters that appear must have been defined in a
previous PARAMETER statement. Function references and non-integral
exponentiations are prohibited. A parameter may not be used to form a
complex constant.

Unless specifically prohibited, parameter names may be used wherever a
constant could be used (including DATA and DIMENSION statements) except
in FORMAT statements. Since parameters are named constants, they may
not be elements of COMMON blocks and cannot be equivalenced. They may
be used in declaring bounds of arrays in COMMON.

In F77 the parentheses around the parameter list may be omitted.

DATA INITIALIZATION STATEMENT

DATA Statement

DATA k/d/ [,k/d/]... (Commas are optional)

Allows initialization of data items at load time. Each k is a list of
variables, array names, array elements, substring names, and implied-DO
lists, in which any expressions that appear must be integer constant
expressions. Each d is a list of constants and parameters, possibly
with repetition factors. A repetition factor is an integer constant
followed by an asterisk.

The values in each d are assigned in order to the corresponding items
in Ik. For each item, there must be a value of a type legally
assignable to the item. Numeric type conversion and character
padding/truncation will occur as they would in an assignment statement.
Any implied-DO lists and repetition factors present operate as they
would in a list-directed READ statement. Example:

INTEGER A,K, ARR(1:5, 1:5)
DATA A,K/3,4/((ARR(I,J), 1=1,5), J=l,5)/25*5.0/

When large arrays of character data must be'initialized, effort can be
saved by declaring a separate CHARACTER variable equal in length to the
entire array, equivalencing it to the array, and initializing it with
the concatenation of all the desired initial values. Example:

January 1980

SECTION 3 IDR4029

CHARACTER*2 K(3)
CHARACTER*6 INTTK
EQUIVALENCE (KfINITK)
DATA INITK /'ABCDE'/
/* Ka^'AB 1 K(2) = 'CD' K(3) = 'E ' */

Any data item initialized in a DATA statement, and any data items
equivalenced to it, will be declared static by the compiler. See the
SAVE statement above and the -SAVE option in Section 7.

F77 also allows data to be initialized in type-statements. See above.

STORAGE ALLOCATION STATEMENTS

F77 provides two forms of storage: static and dynamic. Static storage
is allocated for all program units before program execution begins,
while dynamic storage is allocated only when a subprogram becomes
active, and is de-allocated when it becomes inactive. Consequently,
static data items retain their values between subprogram references,
while dynamic data items lose their values when a subprogram returns.
Dynamic data items in a main program never lose their values, because
the main program is always active.

The following factors determine whether a given data item will be
static or dynamic:

• If a program unit is compiled with the -SAVE option, all data
items in it will be static. If it is compiled with -DYNM (the
default), all data items not otherwise declared static will be
dynamic.

• All data items in any COMMON block are static in F77. (In
FORTRAN 77, only blank COMMON is static.)

• Any data item may be made static by naming it in a SAVE
statement.

• Any data item initialized in a DATA statement will be declared
static, since only static storage can retain an initial value.

To save space in memory, no data item should be declared static unless
there is a specific reason to do so.

The following constraints apply to F77 storage allocation.

• A program unit cannot have more than 128K bytes (one segment) of
local static storage. If more is needed, put the data items in
a COMMON block.

• A program unit cannot have more than 128K bytes of dynamic
storage. Since all COMMON blocks are static, this figure cannot
be increased: when more than 128K bytes of program data exist,
the excess will have to be made static.

REV. 0

IDR4029 STATEMENTS

• Due to the above, any array longer than 123K bytes must be kept
in a COMMON block.

COMMON Statement

COMMON /x/a [,/x/a]... (Commas are optional)

Where each a is a non-empty list of variable names or array names
separated by commas, and each x is a COMMON block name or is empty
(blank COMMON). A COMMON block name must not be identical with the
name of any user-supplied or F77 library subprogram. A COMMON block
name must not contain more than eight characters.

The same name, or no name, may appear more than once in a COMMON
statement, and in more than one COMMON statement. Data items are
assigned sequentially within a COMMON block in the order of appearance
in the COMMON statement(s) defining the block. SEG assigns all COMMON
blocks with the same name to the same storage area, regardless of the
program or subprogram in which they are defined.

The length of a COMMON block is the number of bytes used by all the
items specified in the COMMON statement(s), plus the number of bytes
appended to the block by any EQUIVALENCE statements. COMMON blocks
with the same block name (or no name) in different program units are
not required to have elements within the blocks agree in name, type, or
order.

Blank COMMON blocks may be of differing lengths. In FORTRAN 77, all
instances of a named COMMON block must have the same length. This
restriction is relaxed in F77, as an aid to compatibility with other
extended versions of FORTRAN 77.

When a given COMMON block, named or blank, has different lengths in
different program units, the program unit containing the longest
instance of the block must always be loaded first, because SEG
allocates space for a COMMON block on the basis of its first
occurrence. Note that a set of program units with COMMON blocks could
easily be generated for which no correct load order exists. The
preferred method is simply to make all instances of a COMMON block the
same length, by padding them as necessary. No inefficiency of time or
space utilization can result from following this practice.

Two restrictions exist on the layout of data items in a COMMON block.

• In any COMMON block, all data items except CHARACTER and
L0GICAL*1 variables and array elements must begin at a word
boundary (0, 2, 4... bytes from storage location 0). Use
padding variables as needed to maintain word alignment.

• In large COMMON blocks - those over 128K bytes (one segment)
long - a segment boundary will fall somewhere in the COMMON
block. No data item, including a COMPLEX item, may be split
between two segments. An array may span a segment boundary so

January .1980

SECTION 3 IDR4029

long as the boundary falls between array elements. (See the
Note below.)

To insure that no data item in a large COMMON block will be split at a
segment boundary, the F77 compiler enforces the following restrictions:

Every CHARACTER array more than one segment (128K bytes/characters)
long, which length requires that it be kept in a COMMON block, must
have an element length that is a power of two.

Every variable and array of any kind in a large COMMON block must be
offset by a multiple of its element length from the start of the COMMON
block.

Note

When a COMMON block over one segment long contains an array,
and that array is passed to a subprogram as an actual argument,
the subprogram must have been compiled with -BIG. An array
less than 128K bytes long should not be placed in a COMMON
block more than 123K bytes long. See ARRAYS AS ARGUMENTS in
Section 5.

EQUIVALENCE Statement

EQUIVALENCE (k ,k [,k]...) [, (k ,k [,k] ...)]...

Where each k is a variable, array element, or array name. When an
unsubscripted array name is mentioned, the effect is as if its first
element had been mentioned. Subscripts must be integer constant
expressions. FORTRAN 77 requires a separate subscript for each
dimension of an array. F77 allows one subscript to be used for the
whole array, indexing it in storage order, as in FTN.

An EQUIVALENCE statement causes all the items mentioned in each
parenthesized list to be stored beginning with the same byte of
physical storage. When variables of different lengths are equivalenced
the shorter is stored in the first bytes of the longer. When specific
array elements are equivalenced, the arrays as wholes become
correspondingly aligned.

When data in a COMMON block is equivalenced to other data, some bytes
of the other data may become aligned with storage positions outside of
the COMMON block. When this occurs, the block has been extended. Only
extensions to the right (towards higher storage addresses) are legal.

Legal example:

INTEGER I, A(3)
COMMON // I
EQUIVALENCE (I, A(l))

Here A(2) and A(3) extend the common block to the right (towards higher

REV. 0 3 - 1 0

IDR4029 STATEMENTS

storage addresses). This is permissible.

Illegal example:

INTEGER If A(3)
COMMON // I
EQUIVALENCE (I, A(3))

Here A(l) and A(2) extend the COMMON block to the left. This is
illegal; an error message will result.

Data items already fixed in storage cannot be equivalenced. An
equivalence statement cannot make self-contradictory demands. Hence
the following are all illegal.

INTEGER A (5)
EQUIVALENCE (A(1),A(5))

COMMON // A,B
EQUIVALENCE (A, B)

INTEGER A(5) , B(5) , C(5)
EQUIVALENCE (A(5), B(l)), (B(5), C(l)), (C(5), A(l))

Prime's hardware requires that all COMMON block data items except
CHARACTER and L0GICAL*1 variables and array elements must begin at a
word boundary (0, 2, 4...bytes from the start of the COMMON block). No
EQUIVALENCE can violate this rule. Hence the following is illegal:

CHARACTER*1 CVAR(4)
INTEGER*4 NUM
COMMON // CVAR
EQUIVALENCE (CVAR(2) fNUM)

Any data item equivalenced to a static data item will itself be static.
In F77, character and non-character data may be equivalenced.
FORTRAN 77 does not allow this practice.

SAVE Statement

SAVE [v [,v]...]

Where each v is a variable or array name that is not part of or
equivalenced to a common block. If no v's appear, the SAVE is taken to
include all local data items.

The SAVE statement causes the subprogram variables and arrays named in
it to retain their values between invocations (static storage) rather
than losing their values when the subprogram returns (dynamic storage).

- 11 January 1980

SECTION 3 TDR4029

In F77, all COMMON blocks, named or blank, are static in all cases;
hence the appearance of a COMMON block name in a SAVE statement has no
effect. If a program is compiled with the -SAVE compiler option, all
local data items will be static; hence no SAVE statement will have any
effect. If a program is compiled with -DYNM, (the default) all local
data items will be dynamic unless they are saved.

PROCEDURE STATEMENTS

CALL Statement

CALL name [([argument [,argument]...])]

Where name is a subroutine name and the arguments are a list (possibly
empty) of the arguments passed. The CALL statement transfers control
to the named subroutine. See Section 5.

EXTERNAL Statement

EXTERNAL name [,name]...

Where each name is the name of a user-supplied or library subprogram,
or is a dummy subprogram name. An EXTERNAL statement allows the
subprograms specified to be passed as arguments to other subprograms,
where they may be used directly, or declared EXTERNAL and passed again.
Without the EXTERNAL statement, variables would be default-declared and
passed instead.

Should a name specified as EXTERNAL in a program unit be that of an
intrinsic function, the name will refer to the user-supplied
subprogram, and the intrinsic will be unavailable to that program unit.

It is recommended that the names of any user-supplied subprograms
called from a program unit appear in an EXTERNAL statement in that
unit. This method enhances portability to other systems, where some
intrinsic function might have the same name as a user-supplied
subprogram.

INTRINSIC Statement

INTRINSIC name [,name]...

Where each name is the name of an F77 intrinsic (built-in) function.

An INTRINSIC statement allows the function names specified to be passed
as arguments to other subprograms, which may then reference the
particular function passed. Without the INTRINSIC statement, variables
would be default-declared and passed instead. No name may appear in
both an INTRINSIC and an EXTERNAL statement, or in more than one
INTRINSIC statement, in the same program unit.

REV. 0 3 - 1 2

IDR4029 STATEMENTS

It is recommended that the names of all intrinsic functions referenced
in a program unit be listed in an INTRINSIC statement in that unit.
This practice will result in immediate diagnostic messages if the
program is run on a different system which does not supply all the
needed intrinsics.

Statement Function

Any function which can be expressed in a single assignment statement
can be written as a Statement Function. These are discussed in Section
5. A statement-function name may not be passed as an actual argument.

COMPILER CONTROL STATEMENTS

The following statements are F77 extensions. They provide a means of
controlling source-listing generation from within a program, and of
directing the compiler to insert files into the source program.

NO LIST Statement

NO LIST

If a source listing of any kind has been specified in the compiler
options, encounter of a NO LIST statement will suppress generation of
the listing for source lines following the statement.

If no source listing has been specified, NO LIST has no effect.

LIST Statement

LIST

The LIST statement reverses the effect of a NO LIST statement:
source-listing generation resumes (or begins) following the LIST
statement.

A LIST statement will not of itself cause source listing to be
generated: an appropriate compiler option must have been given. If
one was not, LIST has no effect.

FULL LIST Statement

FULL LIST

This statement is an obsolete equivalent to LIST. It is supported for
compatibility with FTN, and should not be used in new programs. See
Appendix A for a discussion of FTN/F77 compatibility.

- 13 January 1980

SECTION 3 IDR4029

$INSERT Statement

$INSERT insert-file

Inserts into the program, at compilation time, the file whose pathname
is insert-file. The $INSERT command cannot be nested: do not include
a $INSERT command in a file which will be inserted into a program by a
$INSERT command.

$INSERT is commonly used for:

• Insertion of COMMON specifications into programs

• Commonly used statement functions

• Data initialization statements

• Numeric key definitions, especially for the file management
system, applications library, MIDAS, etc.

Note

Unlike other statements, the $INSERT statement must begin in
Column 1.

ASSIGNMENT STATEMENTS

target = expression

target is any data item, expression is any expression whose type is or
can be converted to that of the target.

When an assignment statement is executed, the expression is evaluated
(unless it is just a single value) and the resulting value is assigned
to the target. (See Section 2 for a discussion of expression
evaluation.) Examples:

1. Arithmetic (A, B, and C are numeric variables)

A = B**2 + SIN(C)
A = 25.

2. Logical: (P, Q, R are logical variables).

P = .TRUE.
P = ((A.GT.B) .AND. (B.GT.C))

3. Character: (C, D, E are character variables).

C = D // E // CHARFUNC (D//E)

REV. 0 3 - 1 4

IDR4029 STATEMENTS

Mixed-Type Assignments

When the target and the value being assigned to it are of differing
types, the value will be converted, if possible, to the type of the
target. The conversions differ for character, logical, and arithmetic
data.

Arithmetic Conversions; Arithmetic targets can be assigned values of
any arithmetic type. If the types differ, the compiler will
automatically insert appropriate type-conversion routines (drawn from
the set of intrinsic functions) into the code for the assignment
statement. The conversions and assignments carried out in such cases
are described in Table 3-1.

Logical Conversions: Type LOGICAL targets can be assigned only type
LOGICAL values, but the storage lengths may differ. The value will be
converted to the storage length of the target, then assigned.

Character Conversions: Type CHARACTER targets can be assigned only
CHARACTER values, but the lengths need not match. The value will be
truncated or blank-extended on the right so that it matches the length
of the target, then assigned.

CONTROL STATEMENTS

DO Statement

DO s [,] i = ml, m2 [,m3]

where:

s is the statement number of the last statement in the range of the
DO-loop.

± is an integer, real, or double precision variable.

ml, m2, and m3 are integer, real, or double precision expressions
representing the initial value, the limit value, and the increment
value respectively. If m3_ is not specified, it is assumed to be one.
It may not be zero.

DO 100 A = K+M,-(SQRT(Z)) , -1.5

Execution: ml, m2, and m3 are evaluated prior to the first execution
of the loop, and converted to the type of the index variable. The
index takes on the values ml, ml +• m3, ml + 2*m3, etc. The loop
executes once following each assignment, until an assignment occurs
such that

ml + n*m3 > m2 for m3 > 0, or
ml + n*m3 < m2 for m3 < 0.

When this occurs, the DO-test fails: control jumps immediately to

3 - 15 January 1980

SECTION 3 IDR4029

Table 3-1
Conversion Rules for Mixed-Type Assignments

Value
Type

1*2

1*4

1*2

ASSIGN

TRUNC
ASSIGN

1*4

EXTEND
ASSIGN

ASSIGN

Target Type

REAL

FLOAT
ASSIGN

FLOAT
ASSIGN

DOUBLE

DFLOAT
ASSIGN

DFLOAT
ASSIGN

C*8

FLOAT
ASREAL

FLOAT
ASREAL

C*16

DFLOAT
ASREAL

DFLOAT
ASREAL

REAL SFIX LFIX ASSIGN DFLOAT ASREAL DFLOAT
ASSIGN ASSIGN ASSIGN ASREAL

DOUBLE SFIX LFIX FLOAT ASSIGN FLOAT ASREAL
ASSIGN ASSIGN ASSIGN ASREAL

C*8

C*16

SFIX*
ASSIGN*

SFIX*
ASSIGN*

LFIX*
ASSIGN*

LFIX*
ASSIGN*

ASSIGN*

FLOAT*
ASSIGN*

DFLOAT*
ASSIGN*

ASSIGN*

ASSIGN

FLOAT
ASSIGN

DFLOAT
ASSIGN

ASSIGN

REV. 0 16

IDR4029 STATEMENTS

Table 3-1 (continued)
Conversion Rules For Mixed-Type Assignments

Operation Action

ASSIGN: Transmit value (after any indicated conversion) to
the target.

ASREAL: ASSIGN value as above to the real part of a complex
number, and set the imaginary part of the complex
number to zero.

SFIX: Truncate fractional part and convert result to a
short integer. Overflow may occur.

LFIX: Truncate fractional part and convert result to a long
integer. Overflow may occur.

FLOAT: Convert value to REAL form. Loss of precision may
occur if the argument was DOUBLE PRECISION,
C0MPLEX*16, or INTEGER*4. Overflow may occur with
DOUBLE PRECISION or C0MPLEX*16.

DFLOAT: Convert value to DOUBLE PRECISION form.

EXTEND: Prefix the short integer with 16 binary 0's or l's if
the short integer was positive or negative,
respectively. This cannot change the value or sign
of the integer.

TRUNC: Discard the 16 high-order bits of the long integer.
A value outside the short-integer range will be
altered, and possibly changed in sign, by this
operation.

An asterisk affixed to an operation involving a complex number
indicates that the operation is to be performed on the real part only -
the imaginary part is not involved. When no asterisk is present, the
operation is to be performed on both parts of the number.

- 17 January 1980

SECTION 3 IDR4029

statement j3 and continues from there. The index variable will retain
the value at which the test failed, and this value _is available for use
in subsequent program execution.

DO-loops may be nested. There is no syntactic limit to the nesting of
DO-loops.

It is an undesirable programming technique to have the index variable
appear as the initial, limit, or increment value in a DO statement.
The index variable may not become redefined or undefined during
execution of the range of the DO-loop. The terminal statement of a
DO-loop must not be an unconditional GO TO, assigned GO TO,
arithmetic-IF, block-IF, ELSE IF, ELSE, END IF, RETURN, STOP, END, or
DO statement. The recommended practice is simply to end all DO-loops
with a CONTINUE statement.

FTN Compatibility: The FORTRAN 77 DO-loop differs substantially from
that in FTN. Errors, some undetectable by the F77 Compiler, can occur
if these differences are ignored - particularly when FTN programs are
converted to FORTRAN 77.

In FTN, control can leave and enter an active DO-loop using GO TO
statements: this is called an "extended DO-range". In FORTRAN 77 it
is illegal to branch into the body of a DO-loop at any time: no
extended DO-range is permitted.

In FTN, the DO-test occurs after each execution of the loop; hence all
DO-loops execute at least once. In FORTRAN 77 the DO-test occurs
before execution. Hence, if the first test should fail (when
_i = mL + 0*m3) the loop will not execute at all.

In FTN, the index variable must be integral, the initial and limit
values must be integer constants or variables (no expressions) and the
increment must be positive. None of these restrictions apply to
FORTRAN 77.

The F77 Compiler will generate a DO-loop of either type, depending on
the option given in the command line. When the -D01 option is given,
all DO-loops produced will be of the FTN type, and the code for them
must meet all the FTN restrictions. When the -N0D01 option (the
default) is given, all DO-loops will be of the FORTRAN 77 type: the
FTN restrictions are relaxed, and the prohibition of extended DO-ranges
is enforced.

Caution

If an extended DO-range is present in a DO-loop compiled with
-N0D01, the program will compile without errors, but will fail
on execution. The cause of the failure may be very difficult
to detect.

REV. 0 3 - 1 8

IDR4029 STATEMENTS

CONTINUE Statement

[statement-label] CONTINUE

The CONTINUE statement serves as a point of reference in a FORTRAN 77
program: it is a peg on which to hang a label. It is usually used to
indicate the end of the range of a DO-loop.

ASSIGN Statement

ASSIGN k TO i

Where î is an integer variable, and k is a statement label. An ASSIGN
statement must be executed prior to an assigned GO TO. Once _i n a s been
ASSIGNed, it may be used only in an assigned GO TO until it has been
given an integer value by an arithmetic assignment.

Unconditional GO TO Statement

GO TO k

Transfers control to statement labeled k_.

Computed GO TO Statement

GO TO (k [,k] ...) [,] i

Transfers control to the statement whose label is in the n'th position
in the list of jc's when integer expression _i = n. If there is no n'th
statement label, control passes to the next executable statement after
the computed GO TO.

Assigned GO TO Statement

GO TO i [[,] (k [,k]...)]

Where _i is an integer variable, and each k is the label of an
executable statement in the program unit containing the assigned GO TO.
Transfers control to the statement labeled i_. Prior to executing the
assigned GO TO, a statement label value must be assigned to î using the
ASSIGN statement. The list of k's is optional. If it appears, the
statement label assigned to _i must be one of the labels in the list.

There is no syntactic limit to the number of labels in a computed or
assigned GO TO.

- 19 January 1980

SECTION 3 TDR4029

Arithmetic-IF Statement

IF (e) kl, k2, k3

Where e is an arithmetic expression with an integer, real, or
double precision value. If e < 0 (negative) control is transferred to
statement labeled kl; if e = 0 (exactly), control is transferred to
statement labeled k2; and if e > 0 (positive), control is transferred
to statement labeled k3.

The arithmetic-lF is obsolete: use the block-lF statement in new
programs.

Logical-IF Statement

IF (e) statement

Where e is a logical expression and statement is any valid executable
statement except a DO, logical-IF, block-IF, ELSE IF, ELSE, or END IF
statement. If e_ is true, the statement is executed; if e is false,
control passes to the next executable statement. ~

Note

An arithmetic-IF may be the statement in a logical-IF but this
is not recommended as a good programming practice.

Block-IF Statement

IF (logical expression) THEN
[statements]
("ELSE IF (logical expression) THEN 1 ...
1_[statements] J
[ELSE]
L[statements]J
END IF

Allows a block of statements to be executed if an associated logical
expression is true, or skipped if it is false. Scans a series of such
blocks, executes the first whose expression is true, and skips over the
remaining blocks automatically.

There may be any number of ELSE IF statements, or none. There may be
at most one ELSE statement, which must follow any ELSE IF statements.
The blocks may contain any number of statements, or none.

Execution: The logical expressions in the IF and any ELSE IF
statements are evaluated in the order they appear. If an expression is
false, the next expression is evaluated. If an expression is true, the
block of statements between it and the next ELSE IF, ELSE, or END IF
statement is executed. Control then jumps (or passes) to the END IF
statement and proceeds sequentially from there. If no expression is

REV. 0 3 - 2 0

IDR4029 STATEMENTS

true and an ELSE statement is present, the block of statements
following it is executed. Otherwise, none of the blocks is executed,
and control proceeds from the END IF statement.

Nesting; Any of the statements controlled by a block-lF can be another
block-IF. The ELSE IF, ELSE, and END IF statements of a nested
block-IF are local, and do not affect the flow of control in the
containing block-IF. Nested block-IF's should be indented to indicate
this independence.

Note

Transfer of control into a block-IF from outside is prohibited.
Entry may occur only through the initial IF statement.

When a DO-loop is present in a block-IF, it must be wholly
contained in the statement block in which it begins. When a
block-IF is present in a DO-loop, it must be wholly contained
in the body of the loop.

PAUSE Statement

PAUSE [n]

Where n is an optional decimal number of up to five digits or a
CHARACTER constant. Halts the program and prints ****PAUSE n at the
keyboard. Keying in START continues operation of the program at the
next executable statement following the PAUSE.

RETURN Statement

RETURN [n]

Used in a subprogram to cause return to the calling program. Any
number of RETURN statements may be present. A RETURN should appear
before the END statement, but one will be assumed if it does not.

In a subroutine, the integer expression n may be specified. Execution
of RETURN n causes return to the statement of the calling program unit
whose label was passed as the n'th statement-label dummy argument in
the subroutine argument list. See Section 5 for details.

STOP Statement

STOP [n]

Where n is an optional decimal number of up to five digits or a
CHARACTER constant. Halts program execution, closes all file units
referenced by the program, prints ****STOP n at the keyboard, and
returns control to the PRIMOS level. A STOP statement may appear
anywhere in a program unit. In a main program, an END without a STOP

- 21 January 1980

SECTION 3 IDR4029

causes a STOP to occur automatically. If the effect of a STOP without
the printing of '****STOP' , is desired, use CALL EXIT rather than STOP.

END Statement

END

The final statement of a program, subroutine (including a BLOCK DATA
subroutine) or external function. Tells the compiler that it has
reached the physical end of the program unit. In a main program, END
implies STOP if no STOP statement precedes it. In a subprogram, END
implies RETURN if no RETURN statement precedes it.

SUMMARY OF STATEMENT SYNTAX

In the following table, all program specification statements are listed
in alphabetical order with their syntax requirements. The table is
intended only as a reminder for those already familiar with the
statements.

REV. 0 3 - 2 2

IDR4029 STATEMENTS

Statement

Arithmetic-IF

ASSIGN

Assigned GO TO

BLOCK DATA

Block-IF

CALL

COMMON

Computed GO TO

CONTINUE

DATA

DIMENSION

DO

END

ENTRY

EQUIVALENCE

EXTERNAL

FUNCTION

GO TO

IMPLICIT

Table 3-2.

Specification Statement Syntax

Syntax

IF (e) kl, k2, k3

.ASSIGN k TO i

GO TO i [[,] (k [,k]...)]

BLOCK DATA [name]

IF (logical expression) THEN
[statements]
ELSE IF (logical expression) THEN
[statements]
ELSE
[statements]

END IF

CALL name [([argument [,argument]...])]

COMMON /x/a [,/x/a]... (Commas are optional)

GO TO (k [,k] ...) [,] i

[statement-label] CONTINUE

DATA k/d/ [,k/d/]... (Commas are optional)

DIMENSION array declarator [,array declarator]...

DO s [,] i = ml, m2 [,m3]

END

ENTRY entry-name [([argument [, a r g u m e n t] . . .])]

EQUIVALENCE (k ,k [, k] . . .) [, (k ,k [, k] . . .)] . . .

EXTERNAL name [,name] . . .

[type] FUNCTION name ([argument [, a r g u m e n t] . . .])

GO TO k

IMPLICIT type (list) [,type (list)]...

- 23 January 1980

SECTION 3 IDR4029

Table 3-2 (continued)

Specification Statement Syntax

Statement

INSERT

INTRINSIC

LIST

Logical-IF

NO LIST

PARAMETER

PAUSE

PROGRAM

RETURN

SAVE

STOP

SUBROUTINE

Type-sta tement

Syntax

$INSERT insert-file (Must start in Col. 1)

INTRINSIC name [,name]...

LIST

IF (e) statement

NO LIST

PARAMETER (p=c [,p=c]...)

PAUSE [n]

PROGRAM name

RETURN [n]

SAVE [v [,v]...]

STOP [n]

SUBROUTINE name [([argument [,argument]...])]

type v [,v] ...

REV. 0 - 24

IDR4029 INPUT/OUTPUT

SECTION 4

INPUT/OUTPUT STATEMENTS

The following brief discussion is intended only as a review, to
establish the context in which FORTRAN I/O commands operate. Those
unfamiliar with the features mentioned should consult an appropriate
textbook.

Input/Output in FORTRAN 77 is based on logical records stored in files.
The physical aspects of record and file storage are not dealt with by
the language. Hence, the following descriptions are concerned only
with the logical structures involved.

F77 DATA STORAGE

A file is a sequence of bytes stored in or accessible to the computer.
A file may be empty, or may contain one or more records. The records
are subsequences of bytes separated from each other either physically
or logically (or both) in such a way that they can be read or written
individually. The record is the basic unit of data transfer.

Every open file has a pointer. When a file is first opened, its
pointer is positioned before the first record. For data transfer, the
pointer first moves to the beginning of the selected record (direct
access) or the next record in the file (sequential access), then sweeps
across the record as the record is read or written. After data
transfer, the pointer remains at the end of the record just read or
written, or after the endfile record if one was written or encountered.

In an interactive environment, the sequence of bytes stored in the user
terminal is considered a file, since it has all the qualities usually
associated with a file except permanence. Usually no distinction is
needed between the terminal and the file it stores: one just speaks of
writing to or reading the terminal. Do not confuse the terminal's
cursor with its file pointer.

Types of Record

There are three types of record: formatted, unformatted, and endfile.
No file may contain both formatted and unformatted records.

Formatted Record: A formatted record consists entirely of ASCII
characters. Such a record can be accessed only in conjunction with a
format list, which tells the computer how to translate the ASCII data
to or from representations suitable for internal processing.

January 1980

SECTION 4 IDR4029

Unformatted Record: An unformatted record contains data in the same
form in which it is actually used by the computer. No format list is
used when it is accessed: the data is transcribed directly to or from
the storage medium.

Endfile Record: An endfile record is written by an ENDFILE statement.
It may occur only as the last record of a sequential file. Encounter
of the endfile record during a READ informs the system that the file
has been exhausted. See ENDFILE Statement, below.

Record Lengths

The length of a record is measured in bytes. In a formatted record,
each byte holds one character.

Formatted and unformatted records may be stored either in fixed-length
form or varying-length form. No file may contain both fixed- and
varying-length records.

Fixed Length: A file of fixed-length records is produced when the RECL
(record length) option is given in the OPEN statement creating the
file. All records written to the file will be of the length specified.

Use of the RECL option for a sequential-access file is an F77
extension.

Varying Length: A file of varying-length records is produced when the
RECL option is omitted from the OPEN statement creating the file. Each
record will have the length needed to hold its data, up to the current
maximum record length. See INCREASING MAXIMUM RECORD LENGTH, below.
Files of varying-length records cannot be used under direct access.

Implementation: The following information is significant only when
space conservation on disc files is a major concern.

Files of varying-length records are kept in compressed ASCII format:
sequences of identical characters, most often blanks, are replaced by
one example of the character and a repeat count. All such files are
processed through Physical Device 7. Compressed format is maximally
economical of space, but requires some additional processing time to
compress and uncompress the records.

Files of fixed-length records are kept in uncompressed ASCII format:
records are stored just as they are created by the program, with no
compression. All such files are processed through Physical Device 8.
Uncompressed format can be quite wasteful of space, but I/O on
uncompressed files is faster than on compressed files because no time
is spent compressing and decompressing the records.

For further information, see The PRIMOS Subroutines Reference Guide.

REV. 0

IDR4029 INPUT/OUTPUT

Types of File Access

There are two types of file access: sequential and direct.

Sequential Access: Under sequential access, the file pointer can move
only one record at a time, either forward to transfer data, or backward
due to a BACKSPACE command; or it may jump to the beginning of the
file (REWIND) .

Direct Access: Under direct access, the file pointer can jump to the
beginning of any record in the file and read or write it. BACKSPACE,
ENDFILE, and REWIND are not applicable to direct access.

Types of File

There are two types of file in F77: those which were created under the
sequential access method - SAM files - and those created under direct
access - DAM files. The two file organizations are quite different. A
special type of sequential file, the internal file, is discussed
separately.

SAM Files: In a SAM file, the records are stored in the order they
were written, and are usually read in that order. New records can be
added only to the end of the file, and records cannot be deleted. SAM
files can be read or written only under sequential access. SAM records
may be of fixed- or varying-length.

DAM Files: In a DAM file, the records are stored as required to
facilitate direct access - the details are beyond the scope of this
book. New records can be added anywhere in any order; existing
records can be deleted by over-writing them. DAM files must be written
only under direct access, but can be read by either direct or
sequential access. DAM records must always be fixed-length.

Every record in a DAM file is identified by a key (a positive integer).
This key is specified when the record is written. Under direct access,
a record is retrieved by giving its key in a direct access READ
statement. Under sequential access, a DAM file acts like a SAM file to
which the records were written in order by key; a record is retrieved
by reading through the file until it is reached.

Caution

A direct access file must not be modified by the Editor or any
sequential data transfer statement, or its usability for direct
access will be partly or wholly lost.

Internal Files

These provide a way to convert data from one form to another within
main memory.

January 1980

SECTION 4 IDR4029

An internal file is an area of memory where a type CHARACTER variable,
array, array element, or substring is stored. Such an area acts as an
internal file when the name of the data item stored there is given in
place of the file unit number in a formatted, sequential READ or WRITE
statement.

The READ or WRITE proceeds as usual, but the "file" used is the
designated internal storage area, rather than an external file on
secondary storage. Data is transferred to or from the file area, after
conversion as directed by the associated format list.

An internal file contains only one record. After each read or write,
its pointer returns automatically to the beginning of the record.

The ENCODE and DECODE statements of FTN are obsolete in FORTRAN 77.
Specify an internal file to an ordinary READ or WRITE, as described.

EDITING F77 FILES

The PRIMOS Editor produces and expects SAM files of formatted,
varying-length records. A file created with these attributes by an F77
program may be edited freely. A file created by the Editor may be
opened with these attributes in an F77 program and modified as desired.

The Editor should not be used to modify a SAM file of fixed-length,
formatted records, because it will automatically compress the file,
effectively transforming it to a file of varying-length records.
Neither should it be used on a DAM file, since it will not maintain the
fixed-length records a DAM file requires. The editor may be used to
examine a fixed-length file provided it is not refiled (no FILE command
given) .

The Editor cannot process unformatted files.

INCREASING MAXIMUM RECORD LENGTH

When the shared libraries are used in loading an F77 program
(unqualified LI command to SEG during loading) records of all types
have a maximum length of 32K bytes. This limit cannot be increased.

When the unshared libraries are used (LI NPFTNLB and LI IFTNLB to SEG
during loading) the maximum record size is initially 256 bytes, but it
may be increased to up to 32K bytes. When records longer than 256
bytes are needed, the PRIMOS I/O Control System (IOCS) must be
notified. Two aspects of IOCS are involved:

• The size specified by the variable in the I/O size-control block
F$IOSZ.

• The size of the I/O buffer F$IOBF. This buffer is discussed
further under Data Transfer Statements, below.

REV. 0 4 - 4

IDR4029 INPUT/OUTPUT

Specifications to IOCS must be given in two-byte words. To increase
the maximum record length, proceed as follows:

1. Increase the value specified in F$IOSZ to the desired record
length by inserting the following statements into the main
program:

COMMON/F$IOSZ/MAXSI ZE
INTEGER*2 MAXSIZE/halfwords/

where halfwords is an integer constant giving the desired
record length in two-byte words (half the length in bytes).

2. Increase the size of F$IOBF to the desired record length by
inserting the following statements into the main program:

COMMON/F$IOBF/BUFSIZE
INTEGER*2 BUFSIZE (halfwords)

where halfwords is as above.

Any variable names could be used in place of MAXSIZE and BUFSIZE.

The reason no special action is needed to obtain the maximum record
size when using the shared libraries is that they automatically provide
a MAXSIZE and BUFSIZE of 16K words (32K bytes) .

Note

The value in F$TOSZ and the size of F$IOBF set an upper size
limit on all records, but do not determine the actual record
size for any particular file. The actual record size for a
fixed-length file is determined by the RECL option in the OPEN
statement for the file. (See below.) Arguments to RECL must
be given in bytes. For varying-length files, including the
terminal, it depends on the individual record.

FILES AND PROGRAMS

Before a program can read or write a file, the programmer must
establish a connection between the file and the program. This is
accomplished by assigning a device if necessary, and by opening the
file on a file unit.

Assigning a Device

When a file is on the card punch or reader, the paper tape punch or
reader, a magnetic tape drive, or is being written directly to the line
printer without the use of SPOOL, the device must be ASSIGNed before
program execution begins. See The Prime User's Guide.

January 1980

SECTION 4 IDR4029

Opening a File on a File Unit

A file unit is a numbered channel through which data flows between a
program and a file. Every file except the user terminal, which is
always open on file unit 1, must be connected to a file unit prior to
data transfer. There are three ways of connecting a file to a file
unit:

• With the FORTRAN 77 OPEN statement. This is the usual way.

• With a call to one of the PRIMOS file-opening subroutines.
These provide more power and flexibility than the FORTRAN 77
OPEN, but these advantages are usually not needed.

• With a PRIMOS OPEN command executed before the program is run.
This is known as preconnection.

A preconnected file may be opened again within the program, and
additional attributes added to the connection. (See OPEN Statement
below). In case of conflicting attributes, those specified within the
program take precedence.

See The PRI.MOS Subroutines Reference Guide for details on the PRIMOS
file-opening subroutines.

Caution

PRIMOS and F77 use different numbering systems to describe the
set of file units. When a file unit is referenced in F77, its
FORTRAN unit number must be used. When it is referenced in a
PRIMOS subroutine call, the corresponding PRIMOS Funit number
must be given instead. Beware of confusing the two descriptive
systems. See Table 4-1.

Integer arguments to most PRIMOS Subroutines must be INTEGER*2.

REV. 0

IDR4029 INPUT/OUTPUT

Table 4-1. Devices and Their Default FORTRAN Unit Numbers

FORTRAN
Unit Number

1
2
3
4
5
6
7
3
9
10
11
12
1.3
14
15
16
17
18
19
20
21
22
23
24
25
26
27
23
29

PRIMPS DEVICE

User terminal
Paper tape reader or punch
•MPC card reader
Serial line printer
Funit 1
Funit 2
Funit 3
Funit 4
Funit 5
Funit 6
Funit 7
Funit 8
Funit 9
Funit 10
Funit 11
Funit 12
Funit 13
Funit 14
Funit 15
Funit 16
9-track magnetic tape unit 0
9-track magnetic tape unit 1
9-track magnetic tape unit 2
9-track magnetic tape unit 3
7-track magnetic tape unit 0
7-track magnetic tape unit I
7-track magnetic tape unit 2
7-track magnetic tape unit 3
Funit 17

139 Funit 127

The mapping of FORTRAN unit numbers to PRIMOS Devices shown here may be
altered for the duration of a program through a call to the PRIMOS
Subroutine ATTDEV. See The PRIMOS Subroutine Reference Guide.

January 1980

SECTION 4 IDR4029

FILE OPERATIONS

The possible operations on a file are:

• Create a new file (OPEN).

• Access an old file (OPEN).

• Change file-connection attributes (OPEN).

• Determine current status and attributes of a file (INQUIRE).

• Transfer data to/from a file (READ, WRITE, PRINT, FORMAT).

• Indicate the end of a file (ENDFILE).

• Reposition the file pointer (BACKSPACE, REWIND).

• Disconnect from a file (CLOSE).

• Delete a file (Options in OPEN and CLOSE).

The statements which perform these operations are divided into four
categories:

• File Control Statements:

OPEN
CLOSE
INQUIRE

• Device Control Statements:

ENDFILE
BACKSPACE
REWIND

• Data Transfer Statements:

READ
WRITE

PRINT

• Format Statement:

FORMAT

REV. 0

IDR4029 INPUT/OUTPUT

FILE CONTROL STATEMENTS

File control statements establish, alter, or read out the current
attributes and status of a file. In file control statements, all
integer arguments must be INTEGER*4 and all logical arguments must be
L0GICAL*4. An argument that is not an expression may be either a
variable or an array element.

OPEN Statement

OPEN ([UNIT=]unit# [,FILE= filename] [,STATUS= stat] [,ACCESS=acc]
[,FORM= fm] [,RECL= reclngth] [,BLANK= blnk] [,ERR= label]
[,IOSTAT= ios])

An OPEN statement may be used to create a new file and establish its
basic properties, or to connect a file to a file unit and establish the
properties of the connection. For a new file, one OPEN statement will
perform both these functions. The same file may be connected with
different properties at different times, but must always be closed
before it is reopened.

The options used may be given in any order, except that if UNIT= is
omitted, unitft must appear first. The meanings of the options, and the
data types required for the arguments, are described in Table 4-2.

The following is an example of the OPEN statement:

INTEGER*4 STATVAL
CHARACTER*20 ACCTYPE
ACCTYPE = 'SEQUENTIAL'
OPEN (10, FILE= 'YORD', STATUS= 'OLD', ACCESS= ACCTYPE,

FORM= 'FORMATTED1, RECL= 25, ERR= 999, IOSTAT= STATVAL)

An existing file named YORD is opened for formatted sequential access
on file unit 10. The record length is 25. Should a numeric field
containing blanks be read from the file, the blanks will be deleted.
Should an error occur, for instance if the file does not in fact exist,
or unit 10 is already in use, control will transfer to Statement 999,
and STATVAL will be given a positive value.

PRIMPS File-Opening Subroutines; These permit files to be created
interactively at run time, allow files to be opened with various
protection attributes, and provide other services additional to those
of the FORTRAN 77 OPEN Statement. See The PRIMOS Subroutines Reference
Guide. See also the Caution under FILES AND PROGRAMS, above.

January 1980

SECTION 4 TDR4029

Table 4-2. OPEN Statement Options

Option Argument Data-Type Results of Arguments Specified

UNIT=

FILE=

Integer*4 Expression File is opened
specified.

on the file-unit

Character Expression The file has the name specified. A
pathname may be used. If no FILE= is
specified for a new non-scratch file,
the file will be named Fftnnn where nnn
is the number of the file-unit on which
the file was opened.

STATUS= Character Expression 'OLD'

'NEW'

Specified if
already exists.

the file

Specified if the
being created.

file is

SCRATCH':

'UNKNOWN':

File is temporary: it will
be automatically deleted at
program end. No file name
may be specified.

(Default) Specified if the
status is not known to the
programmer. The processor
will determine the
appropriate status.

ACCESS= Character Expression 'SEQUENTIAL': (Default) File is
connected for sequential
access.

'DIRECT': File is connected
direct access.

for

FORM= Character Expression 'FORMATTED': (Default under
sequential access) File
is connected for
formatted data transfer.

'UNFORMATTED': (Default under direct
access)File is connected
for unformatted data
transfer.

RECL= Integer*4 Expression Sets record length for a file of
fixed-length records. Must be omitted
for a file of varying-length records.
Use in SAM files is an F77 extension.

REV. 0 - 10

IDR4029 INPUT/OUTPUT

Required in DAM files.

BLANK= Character Expression This item specifies treatment of blanks
in numeric input fields when data is
read into the file.

'NULL': (Default) All blanks are
deleted, and digits compressed
to the right side of the input
field. An all-blank field will
be interpreted as a zero value.

'ZERO1: All but leading blanks are
converted to zeroes, as in
FORTRAN 66.

ERR= Statement Label Control transfers to statement specified
if an error occurs during execution of
the OPEN statement.

IOSTAT= Integer*4 Variable Set to zero if the OPEN statement
executes successfully. Set positive on
error in OPEN-statement execution.

- 11 January 1980

SECTION 4 IDR4029

CLOSE Statement

CLOSE ([UNIT=]unit* [,STATUS= stat] [,ERR= label] [,IOSTAT= ios])

The CLOSE statement disconnects a file from a unit. ERR= and IOSTAT=
have the same significances as in the OPEN statement. STATUS=
determines the final disposition of the file. The argument stat is a
character expression which may have the values:

'KEEP1 The file will be retained after it is closed. This is
the default for non-SCRATCH files, and must not be given
for SCRATCH files.

'DELETE' The file will be deleted after it is closed. Default for
SCRATCH files.

The options used may be given in any order, except that if UNIT= is
omitted, unitfr must appear first.

When execution terminates normally, all files opened or referenced in
the program (except CÔ IO files) are automatically closed. However,
when execution terminates due to an error, all open files remain open.

INQUIRE Statement

INQUIRE ([FILE=] filename or [UNIT=] unit!* [,IOSTAT= ios]
[,ERR= s] [,EXIST= ex] [,OPENED= od] [,NUMBER= num]
[,NAMED= nmd] [,NAME= fn] [,ACCESS= ace]
[,SEQUENTIAL= seq] [,DIRECT= dir] [,FORM= fm]
[,FORMATTED= fmt] [,UNFORMATTED= unf] [,RECL= rcl]
[,NEXTREC= nr] [,BLANK= blnk])

Where filename is a character expression, and unit.f is an integer
expression.

An INQUIRE statement is used to ascertain the properties of a file, or
of its connection to a file unit. Each option acts as a question:
when the INQUIRE statement executes, the variable supplied by the
programmer for each option is set to a value that answers the question
the option asks. The correct data types for the variables, and the
meanings of the various responses, are described in Table 4-3.

The file must be specified by name (INQUIRE by name) or unit (INQUIRE
by unit) but not both. Options may appear in any order, but no option
may appear more than once. If FILE= (or UNIT=) is omitted, the
filename (or unitfr) must appear first.

A variable or array element that may become defined or undefined as a
result of its use in an INQUIRE statement, or any associated data item,
must not be referenced by any other option in the same INQUIRE
statement.

REV. 0 4 - 1 2

TDR4029 INPUT/OUTPUT

Table 4-3. INQUIRE Statement Options

Specifier

FILE=

UNIT=

IOSTAT=

Argument Data Type

Character Expression

Integer*4 Expression

Integer*4

ERR=

EXIST=

OPENED=

NUMBER=

NAMED=

NAME=

ACCESS=

Statement number

Logical*4

Logical*4

Integer*4

Logical*4

Character

Character

Significance of.Possible Values

Specifies file by name.

Specifies file by unit number.

Zero: no error condition exists.

Positive: error condition exists.

Control transfers to statement
indicated if error occurs during
INQUIRE statement execution.

.TRUE.: the file exists (for
INQUIRE by name) or the unit
exists (for INQUIRE by unit).

.FALSE.: the file or the unit
does not exist.

.TRUE.: the file is open (INQUIRE
by name) or the file unit is open
(INQUIRE by unit).

.FALSE.: the file or the unit is
not open.

Variable supplied is set to the
file's unit-number. If there is
none, variable becomes undefined.

.TRUE.: the file has a name.

.FALSE.: the unit has no name.

Variable is set to the file name.
If none or file not connected,
variable becomes undefined.

'SEQUENTIAL': file open for
sequential access.

'DIRECT': file open for direct
access.

Becomes undefined if file is
closed.

- 13 January 1980

SECTION 4 IDR4029

Table 4-3. INQUIRE Statement Options (continued)

SEQUENTIAL= Character

DIRECT= Character

'YES': file can be connected for
sequential access.

'NO': file cannot be connected
for sequential access.

'UNKNOWN': suitability of the
file for sequential access cannot
be determined.

'YES': file can be connected for
direct access.

'NO': file cannot be connected
for direct access.

FORM= Character

'UNKNOWN': suitability of file
for direct access cannot be
determined.

'FORMATTED': open for formatted
data transfer.

'UNFORMATTED': open for unfor­
matted data transfer.

FORMATTED= Character

Becomes undefined if file is not
open.

'YES': file consists of formatted
records.

'NO': file consists of unfor­
matted records.

'UNKNOWN': record type cannot be
determined.

UNFORMATTED= Character 'YES': file consists of unfor­
matted records.

'NO': file consists of formatted
records.

'UNKNOWN': record type cannot be
determined.

REV. 0 - 14

IDR4029 INPUT/OUTPUT

Table 4-3. INQUIRE Statement Options (continued)

RECL= Integer*4 Variable is set to the
record-length for which the file
is open. Becomes undefined if
file consists of varying-length
records or is closed.

NEXTREC= Integer*4 Variable is assigned the value
rH-1 where n is the record number
of the last record read or
written on a file connected for
direct access. If no records have
been read or written, the
variable is set to 1. If the file
is not connected for direct
access, or if the position of the
file pointer is indeterminate due
to a previous error, the variable
becomes undefined.

BLANK= Character 'ZERO': non-leading blanks in
numeric fields will be converted
to zeroes.

'NULL1: non-leading blanks in
numeric fields will be deleted.

If the file is not open for
formatted data transfer, the
variable becomes undefined.

- 15 January 1980

SECTION 4 IDR4029

DEVICE CONTROL STATEMENTS

These statements apply only to sequential {SNA) files. They reposition
the file pointer, either physically (file on tape) or logically (file
on disc), or write the endfile record that prevents a device from
reading off the end of a file.

'IOSTAT=' and 'ERR=' are as described for the OPEN statement. If only
unitft is specified, the parentheses may be omitted.

BACKSPACE Statement

BACKSPACE ([UNIT=]unit* [,IOSTAT= ios] [,ERR= label])

Moves the pointer of a file open for sequential access back to the
beginning of the previous record. BACKSPACE may be performed:

• On any formatted file, except that records written using
list-directed I/O may not be backspaced over.

• On any unformatted file having a fixed record-length (RECL size
specified in the OPEN statement).

When a file pointer is positioned after the endfile record, as is the
case after the ENDFILE condition has been raised, BACKSPACE will
reposition the file pointer before the endfile record. When a file
pointer is at the initial point of the file, BACKSPACE has no effect.

REWIND Statement

REWIND ([UNIT=] unit* [,IOSTAT= ios] [,ERR= label])

Repositions the file pointer to the initial point of a file, either by
physically rewinding a tape, or by resetting a disc file's logical
pointer. When a file pointer is at the initial point of the file,
REWIND has no effect.

ENDFILE Statement

ENDFILE ([UNIT=]unit* [,IOSTAT= ios] [,ERR= label])

Writes a device-specific endfile record on the file connected to the
file unit unitft. The pointer is left positioned after the endfile
record. This statement can also be used to truncate disk files.

On a sequential tape file, an endfile record must be explicitly written
following the last data record.

REV. 0 4 - 1 6

IDR4029 INPUT/OUTPUT

On a sequential disc file, the computer will supply an endfile record
automatically whenever one is appropriate. However, use of an explicit
ENDFILE statement for such files is strongly recommended, for
compatibility with other systems.

On a DAM file, no endfile record should ever be written. If one is,
unpredictable and undesirable results will occur.

DATA TRANSFER STATEMENTS

These control the actual transfer of data between files and program
variables. READ moves data out of files. WRITE and PRINT move data
into files.

Data is not transferred directly between files and program variables.
In a READ, the current record is first transferred from the file to the
FORTRAN I/O buffer F$IOBF, which resides in main memory. The FORTRAN
I/O system then scans F$IOBF (using a pointer similar to a file
pointer), reads out the separate data items, edits them if the READ is
formatted, and assigns them to the appropriate variables. In a WRITE,
the order is reversed: the data items are edited or transferred into
F$IOBF, then the contents of F$IOBF are written as a whole to the file.

Usually F$IOBF is scanned sequentially. However, the T edit-control
descriptor can be used in a formatted data transfer to scan it in any
desired order: see under Edit-Control Descriptors, below.

For simplicity, the following descriptions will not mention F$IOBF,
since the programmer need not be concerned with it except when its size
must be increased (See INCREASING MAXIMUM RECORD LENGTH, above) or the
T descriptor is used.

Data transfer statements may be used to convert data from one type to
another inside the computer. See Internal Files, above.

F77 accepts both the ANS and IBM formats in direct-access READs and
WRITES. Details of these formats are given with the individual
statements.

Note

A function must not be referenced anywhere in a data transfer
statement if the reference causes execution of a data transfer
statement.

- 17 January 1980

SECTION 4 IDR4029

READ Statement

Sequential: READ ([UNIT=] unitff [,[FMT=] format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list]

ANS direct: READ ([UNIT=]unitfr [,[FMT=]format] ,REC= records
[,END=label] [,ERR=label] [,IOSTAT=ios]) [input list]

IBM direct: READ (unitfc'recordft [,[FMT=]format] [,END= label]
[,ERR= label] [,IOSTAT= ios]) [input list]

The unitft is an integer expression specifying the FORTRAN file unit to
be read. It must be present. All other items are optional. An
asterisk may be given for unitft: this is equivalent to specifying file
unit 1, the terminal.

If a format is present, the read is formatted; otherwise it is
unformatted. A format may be any of the following:

• The statement number of a FORMAT statement

• An INTEGER variable that has been ASSIGNed such a number

• A CHARACTER array name, array element, variable, or constant

• A fixed-length CHARACTER expression

• An asterisk, denoting list-directed I/O

When a format consists of any character entity, the entity must contain
the same format list, including outer parentheses, that would appear
following the keyword FORMAT in an ordinary FORMAT statement. Only
those positions which will actually be referenced during data transfer
need be defined. Any data at other positions will be ignored. If an
unsubscripted array is used, the format list will be obtained from the
concatenation of all its elements. Blanks are of no significance in
any type of format list.

A recordtt is an integer expression. If a record# is present, the READ
statement is a direct-access READ; otherwise it is a sequential-access
READ. Any file may be read sequentially, but only a file created for
direct access (DAM file) can be read by direct access.

If END= label appears, control will transfer to the statement label
specified by label (an integer constant) if endfile should occur during
the READ. Do not specify END= for a direct-access read.

I f ERR= label appears, control will transfer to label if an error
should occur during the READ.

REV. 0 4 - 1 8

IDR4029 INPUT/OUTPUT

If IOSTAT= ios appears, ios (an integer variable) will be set to:

• A positive value if an error occurred

• Zero if the READ executed successfully

• A negative value if endfile was encountered and no error
occurred

Note

In an IBM direct READ, unitfr'recordft must be the first item in
the list.

If UNIT= is omitted from a sequential or ANS direct READ, unitfr
must be the first item in the list.

If FMT= is omitted from any formatted READ, format must be the
second item in the list, and UNIT= must not appear.

In all other cases, the items may appear in any order.

Input Lists: An input list is a list of variables, arrays, array
elements, and character substrings. These data items provide the
destination of the data transferred in a READ statement. An input list
may be empty, in which case the record is read but skipped. Redundant
parentheses may not appear in an input list.

Input lists may contain implied-DO loops, to simplify assignment of
data to arrays. An implied-DO follows the same rules as an ordinary
DO. The DO-loop control values may have been read in at an earlier
stage of the READ statement. Implied-DO loops may be nested; for each
implied-DO, a set of parentheses must exist surrounding it, the array
names it references, and any DO-loops nested within it. An implied-DO
must be preceded by a comma.

Array elements not specifically referenced in a READ remain unchanged.
If an array name appears without indexes, the computer will generate
implied-DO loops to scan it in storage order. Assumed-size dummy
arrays may not appear in input lists.

Input list examples:

DIMENSION ARR(-1:10,-1:10), VEC(5)

READ(1,100) L, M, ARR(L,M), N, VEC(N)

READ(1,200) ARR |
> Equivalent

READ(1,300) ((ARR(I,J) , 1=1,10), J=1,10) J

READ(1,400) J, K, M, N, (((ARR(I,L), L=M,N) I=J,K)

- 19 January 1980

SECTION 4 IDR4029

WRITE Statement

Sequential: WRITE ([UNIT=]unitfr [,[FMT=]format] [,ERR= label]
[rIOSTAT= ios]) [output list]

ANS direct: WRITE ([UNIT=] unit,! [,[FMT=] format] ,REC= record]*
[,ERR= label] [,IOSTAT= ios]) [output list]

IBM direct: WRITE (unit#'recordf [,[FMT=]format] [,ERR= label]
[,IOSTAT= ios]) [output list]

WRITE Statements differ from READ Statements primarily in the direction
of data transfer. The unit#, format, record#, ERR=, and IOSTAT=
specifiers have the same significance as in a READ Statement. END= is
not an option, and ios will never become negative, because endfile
cannot occur when a file is written.

The rules governing omission of UNIT= and FMT= are the same as for a
READ statement. See the Note above.

Output lists: An output list has the same form as an input list. The
data items in an output list provide the source of the data transferred
in a WRITE statement. They must all be defined when the WRITE occurs.
An output list may be empty, in which case a null record is written.

Output lists may contain implied-DO loops and array names without
indexes, which act as they do in input lists. They may also contain
expressions. Any CHARACTER expression in an output list must be
fixed-length. When the WRITE statement executes, each expression is
evaluated and the result written to the file. An expression might
consist only of a constant, in which case the constant is written. A
format descriptor for an expression must be appropriate to the data
type of its final value. If an output list expression contains
function references, invocation of the functions must not change any
other value in the expression, either directly or indirectly.

Length Mismatch: When a fixed-length record is written, the output
list need not always have the same byte-length as the record. When an
attempt is made to write a record too short to hold all the output list
items, an error will occur. When a record longer than necessary to
hold the output list is written, the extra positions will be padded
wfth blanks if the WRITE is formatted, or with binary zeroes if the
WRITE is unformatted. Padding of extra positions in unformatted DAM
file records is an F77 extension; FORTRAN 77 leaves such positions
undefined.

REV. 0 4 - 2 0

IDR4029 INPUT/OUTPUT

Carriage Control; The first character of each record in a file to be
printed controls vertical spacing, and is not printed. The remaining
characters in a record are printed starting at the left-hand margin.
The significance of the permissible carriage-control characters is:

Character

Blank
0 (zero)
1
+

Vertical Spacing Before Printing

One line
Two lines
To first line of next page
No advance (overprint of last line)

Records that contain no characters, generated by slash editing in a
FORMAT Statement or by an empty output list, cause a blank line to be
printed.

Unrepresentable Values: If a numeric item cannot be printed in the
form required by a format code, the output field will be filled with
asterisks.

PRINT Statement

PRINT format [,output list]

PRINT is a simplified WRITE. It prints the output list at the user
terminal according to the format given in format. The format is as
described for READ and WRITE. Equivalent to:

WRITE (1,format) [output-list]

For error handling (see below) , a PRINT acts as a WRITE in which no
options were given.

LIST-DIRECTED I/O

Also known as format-free I/O, list-directed I/O occurs when an
asterisk appears as the format in a READ, WRITE, or PRINT Statement.

When list-directed output occurs, the values in the output list are
converted to printable form as directed by FORTRAN-supplied format list
defaults. The values are then written to the designated file.

List-directed input is usually employed when data is being read by a
program from a free-format device such as the user terminal. A data
item for list-directed input must have the same form as a constant of
its data type. (See Section 2.) FORTRAN 77 supplies default format
descriptors appropriate to the types of the data items in the input
list, and uses those descriptors to convert the data as it is read in.
List-directed I/O cannot be used in accessing internal files or DAM
files.

- 21 January 1980

SECTION 4 IDR4029

Additionally, this feature provides a method to indicate in the input
data that an item in the input list is to remain unchanged by a READ
Statement. This is accomplished by using appropriate delimiters.

Delimiters

Adjacent values in a data line for list-directed input must be
separated by one or more blanks, a comma, or a slash. Consecutive
blanks are equivalent to single blanks. Blanks adjacent to a comma or
slash are of no significance. An end-of-record is treated as a blank.

Two adjacent commas with no intervening characters except blanks will
leave the corresponding item in the input list unchanged. A slash
terminates a read, leaving any remaining items in the input list
unchanged. A list-directed READ continues until a slash is encountered
or all the items in the input list have been satisfied. If there are
not enough values to complete the READ, an error will occur unless the
data is being read from the terminal, in which case the program will
wait for the remaining values to be typed in.

Repeat Counts

Repeat counts may modify data items under list-directed input.

r*c

represents £ consecutive occurrences of the input value c. If c is
omitted, r_ null values are read in, leaving the next r_ elements of the
input list unchanged. No blanks may appear between j:, ^_, and c.

Examples:

1. Source line: READ(1,*) A,B,C,D
Input data: 151,,2*2E2
Result: A = 151.

B is unchanged
C = 2.E2
D = 2.E2

2. Source line: READ(1,*) I,J,K
Input data: 5 -3 /
Result: 1 - 5

J = -3
K is unchanged

INPUT/OUTPUT ERRORS

If an error occurs during execution of a READ or WRITE (including
PRINT), execution of the statement terminates and the position of the
file pointer becomes indeterminate.

REV. 0 4 - 2 2

IDR4029 INPUT/OUTPUT

If an error or endfile condition occurs during a READ statement, the
data items in the input list and any implied-DO index variables become
undefined. Data items used solely in subscripts, substring
expressions, and implied-DO control values do not become undefined.

If an error occurs during a WRITE statement, any implied-DO index
variables become undefined. The contents of the file remain as they
were before execution of the WRITE began.

If an error occurs during a READ or WRITE that contains no IOSTAT= or
ERR= option, or if endfile occurs during a READ that contains no
IQSTAT= or END= option, execution of the program terminates.

FORMAT STATEMENTS

Formatted data transfer occurs when a format is given in a data
transfer statement. Most often, the format is the statement number of
a FORMAT statement. The other possibilities are discussed under the
READ statement.

In the following discussion, the term "I/O list" means either an input
list or an output list.

FORMAT Statement

label FORMAT (d [,d]...)

label Mandatory statement label

d A f Id descriptor or an edit-control descriptor

The parenthesized list of descriptors is known as a format list.
Blanks are of no significance in a format list. Parentheses may appear
inside a format list to delineate group repeat counts (below).

Field Descriptors: These control the data conversion process during
data transfer. For each item in the I/O list, an appropriate field
descriptor must be given. Data moving to or from the data item is
converted as specified by the corresponding descriptor.

Edit-Control Descriptors: These control more general aspects of the
formatting process, such as scale factors, tab control, and the
optional printing of literal character items to label the output.

Repeat Counts: A repeat count is an integer constant prefixed to a
field descriptor, or to a parenthesized portion or the entirety of a
format list. Individual edit-control descriptors can not have repeat
counts. As data transfer proceeds, the format list items modified by
the repeat count will be re-used the number of times specified before
format control proceeds to subsequent format list items. Repeat counts
have a maximum nesting of ten levels.

4 - 23 January 1980

SECTION 4 IDR4029

Interaction of the Format and I/O Lists: During data transfer, the
format list is scanned from left to right, except as modified by repeat
counts. The I/O list is also scanned from left to right.

When an edit-control descriptor is encountered in a format list, the
action or alteration required by it is performed. When a field
descriptor is encountered, the next I/O list item is edited
appropriately and transmitted. If no I/O list items remain when an
edit-control descriptor is encountered, data transfer terminates.

When the colon edit-control descriptor is encountered, data transfer
terminates if no I/O list items remain to be transmitted; otherwise
data transfer continues.

An empty format list may be given to correspond with an empty I/O list.

Rescanning Format Lists: If the format list is exhausted before the
I/O list, the file pointer is positioned at the beginning of the next
record; format control then reverts to the beginning of the portion of
the format list that was terminated by the last preceding right
parenthesis. If there is no such parenthesis, format control reverts
to the beginning of the format list. Any repeat count preceding the
rescanned format is re-used. On output, the current record is padded
with blanks and a new record started. On input, the remainder of the
current record is skipped, and the file pointer advanced to the
beginning of the next record. Reversion of format control, of itself,
has no effect on the scale factor, the sign control (S, SP, SS) , or the
blank control (BN, BZ) in effect at the time of reversion.

Field Descriptors

A field descriptor mediates the conversion of a data item between
internal and external form. Usually, the data is supplied by the I/O
list. In a character constant field descriptor, it is contained in the
descriptor itself.

Numeric Descriptors: I, F, E, D, and G. Unless specified otherwise or
modified by edit-control descriptors, the following rules apply to all
numeric descriptors:

1. Leading blanks are not significant for input. For output,
leading zeroes are suppressed. A minus sign is printed for a
negative number, but a positive number is left unsigned.

2. For input with F, E, D, and G descriptors, a decimal point in
the input field over-rides the d specification in the
descriptor.

3. For output, fields are right justified. If the field width is
insufficient, asterisks are produced.

REV. 0 4 - 2 4

IDR4029 INPUT/OUTPUT

4. Excess digits of precision may be specified on input to
non-INTEGER numeric data types. The excess will be ignored.

5. See the BLANK= option of the OPEN statement for the rules
concerning blanks in input fields.

The numeric descriptors behave as follows:

• Integer Editing

Iw[.m]

Used to edit a short or long integer.

w is the size of the external field, including blanks and a
sign.

m is the minimum number of places to be displayed on output.
Leading zeroes will be printed if necessary to fill the field.
For input, m has no effect.

• Real Editing (non-exponential)

Fw.d

Writes a real number without an exponent. Reads any real or
double precision number.

w is the size of the field, including blanks, the sign, and the
decimal point.

d is the number of places to the right of the decimal point,

Input: The decimal point may be omitted from the field. The
rightmost d digits will be interpreted as decimal
digits. If a decimal point is present, its position
over-rides d. Input fields appropriate for E and D
editing will also work for F editing.

Output: d decimal positions are always written.

• Real Editing (Exponential)

Ew.d[Ee]

Edits a real or double precision number with an exponent.

w is the size of the external field, including an exponent and
Tts sign.

d is the number of decimal places. On input, an explicit
decimal point over-rides d.

e is the number of exponent digits to be displayed on output.

4 - 25 January 1980

SECTION 4 IDR4029

It is ignored for input. When Ee is omitted from an E field
descriptor used for output, the defaults listed below under
Output will apply.

Input: The exponent may be omitted. E+00 will be assumed.

Output: If Ee is present, e digits of the exponent will be
printed. If Ee is omitted, the appearance of the
exponent will be as follows:

Value of Appearance of
Exponent Exponent

-99 < exp < 99 E + zz
-999 < exp<-99 -zzz (no "E")
99<exp < 999 +zzz (no "E")
-9999 < exp<-999 =zzz (fourth digit lost)
999 < exp < 9999 $zzz (fourth digit lost)

Use of "=" and "$" for overflow exponents is an F77 extension.

Note that the number is always normalized. For non-normalized
output, use a scale factor.

Double Precision Editing

Dw.d

Edits a double precision number.

Input: Operates exactly like an E descriptor.

Output: Operates exactly like an E descriptor with no Ee
present, except that a "D" is substituted wherever an
"E" would appear in the output field. For explicit
control of double precision exponent format, output the
number with an Ew.dEe descriptor.

• Complex Editing

A complex number consists of a pair of real or double precision
numbers. It is edited with an appropriate pair of real or
double precision field descriptors. The fact that the two
numbers form one entity mathematically is irrelevant to
input/output. Edit-control descriptors may appear between the
two field descriptors.

• General Editing

Gw.d[Ee]

w, d, and e are as defined for the F descr ip tor .

Edits rea l data where the magnitude of the data i s not known

REV. 0 4 - 2 6

IDR4029 INPUT/OUTPUT

beforehand. Produces the more readable F format when possible,
but converts to E format when the magnitude of the number
exceeds F format representational limits.

Input: The G descriptor is equivalent to the F descriptor.

Output: The G descriptor acts as follows:

Magnitude (M) of Real
Data Item

0.1 <= M < 1
1 <= M < 10
10 <= M < 100

G descriptor
acts as:

F(w-n) .d, n('b')
F(w-n).(d-1), n('b')
F(w-n).(d-2), n('b')

10**(d-2) <= M < 10**(d-1)
10**(d-1) <= M < 10**(d)
Otherwise

F(w-n).l, n('b')
F(w-n) .0, n('b')
Ew.d[Ee]

where: b is a blank
n is 4 for Gw.d and ef2 for Gw.dEe

If M < .01 or M >= 10**d, then Gw.d is equivalent to kPEw.d,
where k is the current scale factor.

For input, the Gw.dEe field descriptor is treated identically to
the Gw.d descriptor. For output, the Gw.dEe acts as Fw.dEe if
0.1 <= M < 10**d, and acts as Ew.dEe otherwise.

- 27 January 1980

SECTION 4 IDR4029

Non-Numeric Descriptors:
constants.

• Logical Editing

Lw

w is the width of the field.

L, A, X, B, and format-list character

Input: A valid input field consists of optional blanks,
optionally followed by a decimal point, followed by a T
or an F. The T or F may be followed by additional
characters in the field: they will be ignored.

Output: The output field consists of w-1 blanks followed by a T
or F, as the value of the internal datum is true or
false, respectively.

• Character Editing

A[w]

w is the width of the field. It is required for input, but
optional for output. In the following, L is the length of the
character item being edited.

Input: If w >= L, the rightmost L characters are taken from
the external input field. If w < L, the w characters
are left justified in the data item and padded with
blanks.

Output: If w > L, the characters are printed right justified in
the field, preceded by blanks as needed. If w <= L,
the leftmost w characters are printed. If w is not
specified it is assumed to be equal to L.

• Character Constant Editing

'ccc.c' or nHccc.c

Each c_ is any ASCII character (not necessarily a member of the
F77 character set) .

n is the number of characters in the character constant.

Character strings in either of these formats may appear as
constants in an output format list. Such a string contains its
own data, obviating the need for a corresponding item in the
output data list. When the string is encountered during the
scan of the format list, the characters it contains are written
to the current record. A character constant may not appear in a
format list used for input, and may not be modified by an
individual repeat count.

REV. 0 - 28

IDR4029 INPUT/OUTPUT

Note

FORTRAN 66 permitted data to be read into an H format
field, altering the value it would print when the format
list involved was later used for output. FORTRAN 77
will not accept this practice.

• Space Skipping

nx

n is an integer. On output, equivalent to a character constant
of n blanks. On input, equivalent to TRn. No repeat count may
appear.

• Business Editing

B 'string'

The B descriptor is used in printing business reports where it
is desirable to fill number fields to prevent unauthorized
modifications (as on checks), suppress leading zeroes and plus
signs, print trailing minus signs (accounting convention) and
convert minus signs to CR (for indicating credit entries on
bills). Business editing is an F77 extension.

The length of the string determines the field width. If the
width is too small for the number, then the output will be a
string of asterisks filling the field. Legal characters for the
string are:

+ - $, * Z # . CR

Plus (+):

If only the first character is +, then the sign of the
number (+ or -) is printed in the leftmost portion of the
field (Fixed sign). If the string begins with more than one
+ sign, then these will be replaced by asterisks and the
sign of the number (+ or -) will be printed in the field
position immediately to the left of the first printing
character of the number (Floating sign). If the rightmost
character of the string is +, then the sign of the number (+
or -) will be printed in that field position following the
number (Trailing sign).

Minus (-):

Behaves the same as a plus sign except that a space (blank)
is printed instead of a + if the number is positive (Plus
sign suppression) „

- 29 January 1980

SECTION 4 IDR4029

Dollar Sign ($):

A dollar sign ($) may at most be preceded in the string by
an optional fixed sign. A single dollar sign will cause a $
to be printed in the corresponding position in the output
field (Fixed dollar).

Multiple dollar signs will be replaced by printing
characters in the number and a single $ will be printed in
the position immediately to the left of the leftmost
printing character of the number (Floating dollar).

Asterisk (*):

Asterisks may be preceded only by an optional fixed sign
and/or a fixed dollar. Asterisks in positions used by
digits of the number will be replaced by those digits; the
remainder will be printed as asterisks (Field filling).

Zed (Z) :

If the digit corresponding to a Z in the output number is a
leading zero, a space (blank) will be printed in that
position; otherwise the digit in the number will be printed
(Leading-zero suppression).

Number sign (i):

U's indicate digit positions not subject to leading-zero
suppression; the digit in the number will be printed in its
corresponding portion whether zero or not (Zero
non-suppression).

Decimal point (.):

Indicates the position of the decimal point in the output
number. Only i's and either trailing signs or credit (CR)
may follow the decimal point.

Comma (,):

Commas may be placed after any leading character, but before
the decimal points. If a significant character of the
number (not a sign or dollar) precedes the comma, a , will
be printed in that position. If not preceded by a
significant character, a space will be printed in this
position unless the comma is in an asterisk field; then an
* will be printed in that position.

Credit (CR):

The characters CR may only be used as the last two
(rightmost) of the string. If the number is positive, 2
spaces will be printed following it; if negative, the

REV. 0 4 - 3 0

IDR4029 INPUT/OUTPUT

letters CR will be printed.

See Table 4-4 for examples of B-Format usage.

Edit-Control Descriptors

These control general aspects of the formatting process. They differ
from field descriptors in that they do not correspond to or supply
individual data items, but modify the environment in which the data
transfer process occurs.

• Scale Factors

kp

where scale factor k is an unsigned or negative integer
constant. The comma following a scale factor is often omitted,
so that it becomes a prefix of a subsequent field descriptor.
The scale factor has various effects, depending on the
descriptor type and the direction of data transfer.

F, E, D, and G Input; If there is an exponent in the field, the
scale factor has no effect. Otherwise, it converts the data so
that:

External Value = Internal Value*(10**k)

F Output: The scale factor converts the value as for F input.

E and D Output: The mantissa is multiplied by 10**k and the
exponent is reduced by k to maintain the same overall value.
This permits output of E and D numbers in non-normalized form.

G Output: If the G is acting as an F, the scale factor is
ignored. If it is acting as an E, the scale factor behaves as
described for E output.

Note

Once a scale factor has been used, it remains in effect
for all subsequent descriptors of appropriate type,
until it is reset to another value or to zero. When a
format list is rescanned, the scale factor is not reset
to zero automatically. If a scale factor is to affect
only one field, "0P" must appear before the next
scalable descriptor that occurs.

- 31 January 1980

SECTION 4 IDR4029

Table 4-4. Examples of B-Format Usage

Number

123
12345
0
123
1234
0
0
1.035
0
1234.56
123456.78
0
2
-2
2
-2
234
-234
234
-234
12345
-12345
123
-123
98
98
156739

Format

Blur
B'HH1

B ' f r W
B'ZZZZ'
B'ZZZZ'
B'ZZZZ'
B'ZZZfr'
B'#.##«
B '# .## '
B'ZZZ,ZZZ,ZZ#.
B'ZZZ,ZZZ,ZZ#.
B'ZZZ,ZZZ,ZZ#.
B'+W
B'+IH'
B'-zzr
B'-ZZ#'
B'ZZZZZ+'
B'ZZZZZ+'
B'ZZZZZ-'
B'ZZZZZ-'
B'ZZZ,ZZ#CR'
B'ZZZ.ZZ#CR'
B ,+++,++#.##'
B++f , + + # . « '
B'$ZZZZZZ**
B'$$$$$$$r

,*#'
.##'
.#*'

B'$***,***,**#*##'

Output F i e l d

0123

0000

123
1234

0
1.04
0.00

1,234.56
123,456.78

0.00
+002
-002

2
- 2

234+
234-
234
234-

12,345
12,345CR

123.00
-123.00

$ 98
$98

$****156,789.00

REV. 0 - 32

IDR4029 INPUT/OUTPUT

• Sign Control Editing

SP SS S

These control the placement of plus signs in numeric output.
Once a sign control descriptor is encountered, it remains in
effect until it is explicitly altered or revoked.

SP: The processor will insert a plus sign wherever one may
optionally appear.

SS: The processor will not insert any plus sign whose
appearance is optional.

S: The processor will return to the locally defined system
default for sign editing.

• Blank Control Editing

BN BZ

The method of handling blanks in numeric input fields that is
established for a file by the BLANK= option of the OPEN
statement may be temporarily over-ridden by BN or BZ. The
method may be altered as often as desired, and will revert to
the BLANK= value when the READ statement is complete. Blank
control descriptors have no effect on output.

BN: All blanks will be deleted, and digits compressed to the
right side of the input field. An all-blank field is
interpreted as a zero value.

BZ: All but leading blanks will be converted to zeroes, as in
FORTRAN 66.

Positional Editing

Tn TLn TRn

where n is an integer constant.

The following description presupposes that you have read about
the I/O buffer F$IOBF at the beginning of the subsection on DATA
TRANSFER STATEMENTS, above. The pointer which scans F$IOBF
during data transfer ordinarily behaves as follows:

1. Before data transfer, it points to the first position
(byte) of F$IOBF.

2. While an F$IOBF position is being read or written, it
points to that position.

- 33 January 1980

SECTION 4 IDR4029

3. After a position has been read or written, it moves to
the next position to the left and remains there.

4. After the last F$IOBF position has been read or written,
it remains at that position.

Note that this behavior is the same as that of the carriage
position on an ordinary typewriter.

The T edit-control descriptor is used to alter the sequential
progress of the F$IOBF pointer. The pointer can be moved to the
left or right of its current position, or to an absolute
position, in any desired sequence. Subsequent data transfers
will begin at the new position. Thus F$IOBF positions, and
hence the corresponding current-record positions, can be
accessed as often as desired and in any order.

If an attempt is made to move the F$IOBF pointer beyond the
first (or last) F$IOBF position, the pointer will stop and
remain at that position. If T descriptors are used during a
WRITE in such a way that some F$IOBF positions remain undefined
after all data items have been transferred, the undefined
positions will be filled with blanks before F$IOBF is written to
the current file record.

Moving the F$IOBF pointer has no effect on the file pointer,
which never skips positions within a record. Beware of
confusing these two pointers.

TLn: Move the F$IOBF pointer n positions left.

TRn: Move the F$IOBF pointer n positions right.

Tn: Move the F$IOBF pointer to the nth character of the record.

Conditional Output

A colon placed in a format list will cause data transfer to
terminate at that point i_f no items remain in the output list.
This feature is most often used to increase the versatility of a
format list which contains character constant descriptors used
in labeling the output. A colon is ignored on input.

• Record Skipping

A slash in a format list causes I/O processing to proceed to the
next record. As many new records will be begun as there are
slashes. The effect of slashes at the beginning or end of a
format list is additional to the automatic beginning of a new

REV. 0 4 - 3 4

IDR4029 INPUT/OUTPUT

record with each data transfer statement.

Input: Under sequential access, a slash causes the remaining
portion of the current record to be skipped, and the
file pointer to be positioned at the beginning of the
next record, making it the current record. Under
direct access, the remainder of the record is skipped,
the record number increased by one, and the file
pointer positioned at the beginning of the record that
has that record number.

Output: Similar to input, except that all positions skipped
over will be filled with blanks.

Commas adjacent to slashes may be omitted.

SUMMARY OF STATEMENT SYNTAX

In the following table, all input/output statements are listed in
alphabetical order with their syntax requirements. The table is
intended only as a reminder for those already familiar with the
statements.

- 35 January 1980

SECTION 4 IDR4029

Table 4 - 5 .

Input /Output Statement Syntax

Statement Syntax

BACKSPACE

CLOSE

ENDFILE

FORMAT

INQUIRE

OPEN

PRINT

READ S e q u e n t i a l :

READ d i r e c t ANS:

READ d i r e c t IBM:

REWIND

WRITE S e q u e n t i a l :

WRITE d i r e c t ANS:

WRITE d i r e c t IBM:

BACKSPACE ([UNIT=] u n i t * [,IOSTAT=ios] [,ERR=label])

CLOSE ([UNIT=] u n i t i [,STATUS= s t a t] [,ERR= l a b e l]
[,IOSTAT= ios])

ENDFILE ([UNIT=] u n i t * [,IOSTAT= ios] [,ERR= l a b e l])

l a b e l FORMAT (d [, d] . . .)

INQUIRE ([FILE=]f i lename or [UNIT=] u n i t l [,ERR= s]
[,EXIST= ex] [,OPENED= od] [,NUMBER= num]
[,NAMED= nmd] [,NAME= fn] [,ACCESS= ace]
[,SEQUENTIAL= seq] [,DIRECT= d i r] [,FORM= fm]
[,FORMATTED= fmt] [,UNFORMATTED= unf] [,RECL= r c l]
[,NEXTREC= nr] [,BLANK= blnk] [,IOSTAT= ios])

OPEN ([UNIT=] u n i t * [,FILE= filename] [,STATUS=stat]
[,ACCESS= ace] [,FORM= fm] [,RECL= rec leng th]
[,BLANK= blnk] [,ERR= l a b e l] [,IOSTAT= ios]

PRINT format [,output l i s t]

READ ([UNIT=]un i t# [,[FMT=] format] [,END= l a b e l]
[,ERR= l abe l] [,IOSTAT= ios]) [inpu t l i s t]

READ ([UNIT=] u n i t $ [,[FMT=]format] ,REC= record^
[,END=label] [,ERR=label] [,IOSTAT=ios]) [i npu t l i s t]

READ (un i t l* reco rds [r[FMT=]format] [,END= l a b e l]
[,ERR= l abe l] [rIOSTAT= ios]) [i npu t l i s t]

REWIND ([UNIT=]unitft [fIOSTAT= ios] [,ERR= l a b e l])

WRITE ([UNIT=]unit& [, [FMT=] format] [,ERR= l a b e l]
[rIOSTAT= ios]) [output l i s t]

WRITE ([UNIT=]un i t# [r[FMT=] format] ,REC= records
[,ERR= l abe l] [,IOSTAT= ios]) [output l i s t]

WRITE (unitlTrecordft [,[FMT=] format] [,ERR= l a b e l]
[,IOSTAT= ios]) [output l i s t]

REV. 0 - 36

TDR4029 SUBPROGRAMS

SECTION 5

SUBROUTINES AND FUNCTIONS

In addition to one main program, a FORTRAN 77 program may contain any
number of subroutines and functions, collectively called subprograms.
These may be drawn from existing libraries, or may be supplied by the
programmer.

Special terms used below are defined at the beginning of Section 2.

SUBROUTINES

All subroutines are referenced in the same way, regardless of origin:

CALL name [([argument [,argument] ...])]

where name is the name of the subroutine, and the arguments are a list
of data items agreeing in number, order, and type with the dummy
argument list in the subroutine's header statement. If the argument
list is empty, the parentheses may be omitted. Constants and
expressions are permissible as arguments. Any character expressions
must be fixed-length.

When control reaches a subroutine CALL, the subroutine executes. Data
is returned by alteration of the values of arguments and of data in
COMMON. Data must not be returned to an actual argument that was an
expression: no error message will be printed but invalid results may
occur.

January 1980

SECTION 5 IDR4029

Caution

In FORTRAN 77, arguments are passed by reference (address).
Therefore it is extremely important not to alter the value of a
dummy argument whose actual argument is a constant or a
parameter (a constant item). Such an alteration will alter the
value kept in storage for the constant item, just as it would
for a variable. If the compiler has utilized the same storage
copy of the constant item in coding other references to the
item, the altered value will be used when the code is executed.
Example:

1 = 5
PRINT 10,1 /* Value printed is 5
CALL SUB1(5)
1 = 5
PRINT 10,1 /* value printed is 25.

10 FORMAT (12)
STOP
END

SUBROUTINE SUBl (J)
J = J**2
RETURN
END

Subroutine Libraries

Prime supplies several libraries of subroutines. These allow
PRIMOS subroutines to be called from within an F77 program, and
provide various commonly used utilities. When a subroutine from
such a library has been called from a program, the command:

LI library-name

must be given to SEG at load time before the unqualified LI command
is given.

For more information, see The PRIMOS Subroutines Reference Guide.

Note

Many PRIMOS subroutines require and return short integer
arguments. When long integers are used to supply data to
such a subroutine, convert them directly in the argument
list with the INTS intrinsic function. Arguments to which
data is returned must themselves be short integers, since
data cannot be returned to an expression.

REV. 0

IDR4029 SUBPROGRAM

User-Supplied Subroutines

These are constructed as follows:

SUBROUTINE name [([argument [,argument]...])1

(any number of FORTRAN 77 statements)

[RETURN]

END

The name is any legal F77 name having not more than eight characters.
The arguments are a list of dummy arguments corresponding to actual
arguments passed by the calling program unit. A dummy argument may be:

• A variable name

• An array name

• A dummy subprogram name

• An asterisk

Variable and array names must be typed and dimensioned as with any
other such names. The actual argument corresponding to a dummy
subprogram name must have been declared INTRINSIC or EXTERNAL in the
calling program unit. An asterisk corresponds to an alternate return
specifier.

There is no syntactic upper limit to the number of arguments.

Alternate Returns: A subroutine can return to the statement following
the point of call - this is the usual action - or it can return to any
labeled executable statement in the calling program unit. The
subroutine can select the statement to which it will return. Alternate
returns are accomplished as follows:

1. The label of every statement to which the subroutine might
return must appear in the argument list of the CALL statement,
prefixed by an asterisk (or a dollar sign - F77 extension).

2. An asterisk appears in the dummy argument list of the
subroutine at each position corresponding to a statement label
in the CALL statement.

3. RETURN statements in the subroutine may optionally be followed
by an integer expression n. When control encounters a RETURN n
in the subroutine, the subroutine will return to the statement
of the calling program unit whose label corresponds to the n'th
asterisk in the dummy argument list of the subroutine. If
control first encounters a RETURN without a number, or with a
number outside the applicable range, a return to the point of
call will occur. Example:

5 - 3 January 1980

SECTION 5 IDR4029

PROGRAM ALTRTRN
100 CALL PROC1 (J)
300 CALL PROC2 (K)
500 CALL PROC3 (J, K, *100, 4, *900)
700 GO TO 100
900 STOP

END

SUBROUTINE PROC3 (J,K,*,Mf*)
IF (I .EQ. J) RETURN
IF ((I + J) .EQ. K) RETURN 1
IF ((I + K) .EQ. J) RETURN M/2
RETURN
END

/* Returns to stmt 130
/* Returns to stmt 900
/* Returns to stmt 700

Alternate returns are permitted following the CALL of a subroutine at a
secondary entry point (see below) . Only the asterisks in the dummy
argument list at the point of entry are counted.

Recursion

In FORTRAN 77, recursion is not permitted. F77 has been extended to
permit recursion in subroutines, though not in functions. The rules
and syntax are identical in recursive and non-recursive subroutine
calls.

FUNCTIONS

All functions are referenced in the same way, regardless of origin:

[target =] name ([argument [,argument]...])

where name is the name of the function, and the arguments are a list of
data items defined as for subroutines. Note that the parentheses are
mandatory, even when the argument list is empty.

When control reaches a function reference, the value is calculated and
made available at the point of the reference. If the reference is part
of an assignment statement, type conversion will occur if appropriate,
as with any other assignment. A function may return additional data by
altering the values of its arguments and of data in CCWDN.

FORTRAN 77 functions cannot be referenced recursively.

Caution

When a function reference appears in an expression, evaluation
of the function must not alter the value of any other entity in
the expression, either directly or by altering arguments to
other functions.

REV. 0

IDR4029 SUBPROGRAMS

Intrinsic Functions

F77 supplies numerous built-in functions, known as intrinsic functions,
which may be invoked at any point in an F77 program unit. These are
discussed in Section 6.

User-Supplied Functions

These are constructed as follows:

[type] FUNCTION name ([argument [,argument]...])

(any number of FORTRAN 77 statements)

[RETURN]

END

where type is any F77 data type, and name and the arguments are defined
as for subroutines. Note that the parentheses are required even if
there are no arguments. There may be any number of RETURNS but
alternate returns are not permitted; hence no asterisks may appear in
the argument list. END implies RETURN automatically.

The name of the function must appear as a variable within the function.
It may be used like any other variable, and must be defined by the time
the function returns. Its value at that time becomes the value of the
function.

Statement Functions

Any function that can be expressed as a single statement may appear
within the body of a program unit. It may be referenced only from
within that unit. The form is:

name ([argument] [,argument] ...]) = expression

where name and the dummy arguments are defined as for any function, and
are typed in any standard way.

A dummy argument name in a statement function is defined only within
that function; if it is duplicated in another statement function, the
two names have no connection.

If a dummy argument name in a statement function duplicates the name of
a data item in the containing program unit, that name will refer to the
actual argument associated with it in the function reference, rather
than to the similarly named program-unit data item.

The expression may make use of any data item available within the

5 - 5 January 1980

SECTION 5 IDR4029

program unit containing the statement function, except one whose name
duplicates that of a dummy argument and does not appear in the actual
argument list at the function reference.

A statement function may reference any previously defined statement
function, but may not reference itself. Statement functions are local
to the program unit in which they are defined: they may not be passed
as arguments.

SECONDARY ENTRY POINTS

A subset of a subprogram can be executed as if it were a separate
program unit, and given its own argument list, by using the ENTRY
statement. Consecutive ENTRY statements can appear, so that execution
may begin at a given point with any of a variety of argument lists.
The form of the ENTRY statement is:

ENTRY name [([argument [,argument] ...])]

where name and the arguments are defined as for a subroutine. The
argument list of an ENTRY statement need not correspond with that in
the header or any other ENTRY statement.

A secondary entry is referenced (in a function) or CALLed (in a
subroutine) exactly as the main entry point would be, and supplied
arguments corresponding to its particular argument list. Control
proceeds from the entry point to the first RETURN or END encountered.
ENTRY statements encountered in-line are ignored.

An entry name to a function may be typed by default or in a
type-statement. The type may differ from that of the function name and
of other entry names, except that all entry names in a CHARACTER
function must be of type CHARACTER and have the same * (length)
specification. All entry names in a function are automatically
equivalenced. Before the function returns, assignment to an entry name
of the same type as the entry name used in referencing the function
must occur.

Alternate returns are permitted following the CALL of a subroutine at
an entry point. Only the statement labels in the entry point's
argument list are counted.

Note

In some versions of FORTRAN IV, the association of actual and
dummy arguments established when a subprogram is invoked at any
entry point persists following return to the invoking program
unit. Consequently, a subprogram can be invoked repeatedly at
various entry points, and reference made after each invocation
to any dummy argument that became associated with an actual
argument at any previous invocation. This technique is not
accepted by any Prime FORTRAN.

REV. 0

IDR4029 SUBPROGRAMS

ADJUSTABLE SUBPROGRAM ELEMENTS

The length of the value returned by a type CHARACTER function, the
lengths of type CHARACTER dummy arguments in a subprogram, and the
dimension bounds of an array dummy argument, can be made adjustable.
An adjustable element will take on the length or bounds of the
corresponding actual argument at each call. Such flexibility can
considerably increase the versatility of a subprogram.

Adjustable Character Functions

To make a CHARACTER function adjust the length of its result, specify
its length as an asterisk in parentheses:

CHARACTER*(*) FUNCTION CFUNC (A,B)

In each program unit referencing the adjustable function, use a
type-statement to assign the CHARACTER type and a length to the name of
the function. The length of the value returned at each function
reference will be the one assigned to the function in the referencing
program unit.

Adjustable Character Arguments

To make a type CHARACTER dummy argument adjustable, specify its length
to be (*) in a type-statement:

SUBROUTINE YORD (CVAR)
CHARACTER*(*) CVAR

CVAR will take on the length of the actual argument corresponding to it
at each call.

Assumed-Size Arrays

To create an assumed-size array, replace the upper bound of the last
dimension specification in a fixed or adjustable dummy array
declaration with an asterisk. That dimension will take on the upper
bound associated with it in the corresponding actual array in the
calling program unit.

Adjustable Array Dimensions

To create an adjustable array, pass the name of an existing array to an
appropriately typed dummy argument in a subprogram. Dimension the
dummy array using:

1. Integer variables passed to integer dummy arguments in the
subprogram, and/or

January 1980

SECTION 5 IDR4029

2. Integer variables from COMMON.

Expressions are permitted in adjustable array bound declarations,
subject to the following restrictions:

• All variables must be INTEGER

• No array references

• No function references

Example:

REAL FUNCTION ARRTEST(ANAME, DIMl, DIM2)
IMPLICIT INTEGER (A-Z)
COMMON /BND/ DIM3,N
DIMENSION ANAME (DIMl, DIM2:N, 1:10, DIM3+12)

When control passes to a subprogram containing an adjustable array, the
array bounds are determined before execution begins. The variables
used may therefore be redefined or become undefined during execution
without affecting the dimensional properties of the array.

Caution

Adjustable arrays do not represent dimension-by-dimension
subsets of the original array, but are equivalenced to the
original array as a whole. The adjustable array cannot be
longer than the corresponding actual array.

ARRAYS AS ARGUMENTS

The F77 compiler can produce two types of object code. Ordinary code
can address only within a segment. Boundary-spanning code is capable
of addressing across the boundary between one segment and the next.

Whenever an array extends across a segment boundary, all references to
it must consist of boundary-spanning code, because those portions of it
in segments higher than the one in which it begins are inaccessible to
ordinary code.

Arrays in local static or dynamic storage present no problem, because
there may be at most one segment for all static variables, and another
for all dynamic variables: hence no boundary-spanning is possible.
Arrays in COMMON blocks under 128K bytes (one segment) long present no
problem because such blocks are always loaded within a single segment.

An array in a COMMON block over one segment long (a large COMMON block)
may or may not span a segment boundary, depending on its size and its
location in the block. In practice, no array under one segment long
should ever be placed in a large COMMON block - see the Note below.

REV. 0

IDR4029 SUBPROGRAMS

When a program unit is compiled, the F77 compiler inspects any COMMON
statements in it for COMMON block size and the presence of arrays. All
references in the program unit to any array the compiler knows to be in
a large COMMON block will automatically be compiled with
boundary-spanning code. No special action is required of the
programmer in this case.

However, when a dummy array occurs in a subprogram, the compiler has no
way to know the storage status of any actual array that will become
associated with it when the subprogram is invoked. Therefore, the
compiler cannot know whether to compile references to the dummy array
with ordinary or boundary-spanning code. It is the programmer's
responsibility to inform the compiler of the correct action in this
case, through use of of the -BIG/-NOBIG compiler option.

When a subprogram is compiled with -NOBIG (the default), dummy array
references within it will be compiled with ordinary code; the actual
array passed to any dummy array in it must then be contained within one
segment. When a subprogram is compiled with -BIG, all references it
makes to any dummy array will be compiled with boundary-spanning code;
the actual array passed to any dummy argument in it may then span a
segment boundary, though it need not do so.

A dummy-array reference compiled with boundary-spanning code will
execute correctly for any actual array, whether it spans a segment
boundary or not. However, boundary-spanning code executes more slowly
than ordinary code because it performs more complex address
calculation. The -BIG option should therefore not be used
unnecessarily.

Note

An array less than 128K bytes long should not be put in a large
COMMON block, since this will cause the inefficiency of
boundary-spanning code to be needlessly incurred in every
reference to the array.

Character Arrays as Arguments

When a CHARACTER array that may cross a segment boundary is passed as
an argument, the element size of the actual array and the dummy array
must be the same. This is an F77 restriction required to insure that
no element of the array can fall across a segment boundary. See the
COMMON Statement in Section 3 for more information on COMMON block
restrictions.

SUBPROGRAMS AS ARGUMENTS

Entire subprograms may be passed as arguments to other subprograms,
where they may be referenced or passed again. The general method is as
follows:

January 198(3

SECTION 5 IDR4029

1. In the invoking program unit, name any intrinsic functions to
be passed in an INTRINSIC statement, and any user-supplied or
library subprograms to be passed in an EXTERNAL statement.

2. In the actual argument list for each invocation, name the
subprograms which are to be passed to the invoked subprogram.

3. In the dummy argument list at the entry point to the invoked
subprogram (either its header or an ENTRY statement), place an
untyped dummy subroutine name at each position corresponding to
an actual argument that is a subroutine, and an appropriately
typed dummy function name at each position corresponding to an
actual argument that is a function.

4. In the invoked subprogram, use the appropriate dummy subprogram
name wherever a reference to the corresponding actual
subprogram is desired.

For example, suppose that MAIN wishes to call SUB repeatedly, passing
at each call one of the intrinsic functions DSIN and DCOS, and one of
the user-supplied subroutines GREATER and LESSER. The code could be as
follows:

PROGRAM MAIN
INTRINSIC DSIN, DCOS
EXTERNAL GREATER, LESSER
CALL SUB (DSIN, GREATER, 1.D0)
CALL SUB (DCOS, GREATER, 1.D0)
CALL SUB (DCOS, LESSER, 1.D0)
STOP
END

SUBROUTINE SUB (TRIG, COMPARE, NUM)
DOUBLE PRECISION TRIG, NUM
IF (TRIG (NUM) .GT. DTAN (NUM)) CALL COMPARE (NUM)
RETURN
END

Not a l l i n t r in s i c functions can be passed as arguments. See Section 6
before passing i n t r i n s i c functions.

REV. 0 5 - 1 0

TDR4029 INTRINSIC FUNCTIONS

SECTION 6

INTRINSIC FUNCTIONS

For general information on the use of functions in F77 programs, see
Section 5.

F77 INTRINSIC FUNCTIONS

FORTRAN 77 supplies a wide variety of intrinsic (built-in) functions.
These are used for type conversion, character data evaluation, lexical
comparison, and the calculation of various mathematical quantities.

The F77 intrinsic function set includes all FORTRAN 77 intrinsics, plus
additional functions for bitwise logical operations, bitwise shifts,
truncation of an integer, determination of a data item's storage
address, and operations on the C0MPLEX*16 data type.

All F77 intrinsic functions are built in to the language. They may be
invoked at any point in any F77 program unit. The F77 compiler and the
SEG linking loader will automatically supply the functions invoked: no
additional action by the programmer is required.

It is recommended that the names of any F77 intrinsic functions invoked
in a program unit appear in an INTRINSIC statement in that unit. This
practice will result in immediate diagnostic messages if the program is
run on a different system which does not supply all the needed
intrinsics.

Generic and Specific Functions

Many FORTRAN 77 intrinsic functions are generic: they exist in several
versions, called specific functions, which differ only in the data type
each accepts. When the programmer references a generic function, the
F77 compiler will examine the argument list at the reference and select
the specific function appropriate to the data type of the arguments.

Not all specific functions are individually named. Those that are may
be invoked directly by name, in which case the programmer must be
careful to supply the correct data types.

Intrinsic Functions as Arguments

See SUBPROGRAMS AS ARGUMENTS in Section 5. The following is additional
to the discussion there.

January 1980

SECTION 6 TDR4029

Only named specific functions can be passed as arguments to
subprograms. In some cases, a specific function has the same name as
its generic function. When this name appears in an argument list, it
is the specific function that is passed.

Intrinsic functions for type conversion, selection of a maximum or
minimum value, lexical comparison, logical operation, shifting,
truncation of bits, and determination of a data item's memory address
cannot be passed as arguments.

Long and Short Integer Arguments

All new programs written in F77 should use long integers exclusively,
in conformance with the ANSI standard. When program units are
converted from FORTRAN IV to F77, or when F77 program units are written
which will return values to an existing FORTRAN IV program unit, the
use of short integers in an F77 program unit may become necessary.

No constraint on the use of short integers is imposed by the F77
intrinsic set. All F77 intrinsic functions have been extended to
accept either long or short arguments, or a mixture of the two, and to
produce short integer results where appropriate. ANS FORTRAN 77 does
not provide short integers or permit data types to be mixed in an
intrinsic function's argument list.

An intrinsic function which produces an integer result (an integer
intrinsic) will produce either a long or short integer. For integer
intrinsics other than INT whose arguments are integers, the result-type
depends on the argument list at the particular invocation. For integer
intrinsics whose arguments are not integers, and for INT, the
result-type depends on the compiler option (-INTS or -INTL) in effect
when the program unit containing the intrinsic was compiled. The notes
for Table 6-1 tell more exactly how the result-type for each integer
intrinsic is determined.

TABLE OF INTRINSIC FUNCTIONS

The following table, with its accompanying notes, provides a complete
description of the F77 intrinsic functions. Where a specific F77
function has the same name as an existing FTN function, the functions
are the same, except as noted under Reimplemented FTN Constructs in
Appendix A. Before using any function with which you are not
completely familiar, be sure to study carefully the table entry and
accompanying notes, if any, for that function.

REV. 0

Class of Function

Type Conversion

Ô i

CO

Definition

Numeric
to Integer

Number of
Arguments

Numeric to
Short integer

Numeric to
Long Integer

Numeric
to Real

Numeric
to Double
Precision

Numeric
to Complex

1 or 2

Gene r i c
Name

INT

INTS

INTL

REAL

DBLE

CMPLX

S p e c i f i c
Name

_

INT
IFIX
IDINT
-

_

-
-
-

-

-
-
-

FLOAT
-
SNGL
-
REAL

-

-
-
-
DREAL

-

-
-
-
-

Type of
Argument

I n t e g e r
Real
Real
Double
Complex
Complex* 16

I n t e g e r
Real
Double
Complex
Complex*16

I n t e g e r
Real
Double
Complex
Complex*I6

I n t e g e r
Real
Double
Complex
Complex* 16

I n t e g e r
Real
Double
Complex
Complex* 16

I n t e g e r
Real
Double
Complex
Complex*16

Type of
Func t ion

I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r
I n t e g e r

I n t e g e r * 2
I n t e g e r * 2
I n t e g e r * 2
I n t e g e r * 2
I n t e g e r * 2

In teger*4
l n t ege r*4
In teger*4
I n t e g e r * 4
In tege r*4

Real
Real
Real
Real
Real

Double
Double
Double
Double
Double

Complex
Complex
Complex
Complex
Complex

Notes

1 ,32 ,34 ,35

2 ,34 ,36

2 ,34 ,36

3 ,34 ,35

4 , 3 4 , 3 5

5 ,34 ,35

a
S3

50
M
Z
M

o

o
- 3
M

Class of Function Definition
Number of
Arguments

Generic
Name

Specific
Name

Type of
Argument

Type of
Function Notes

<

S i

Numeric t o
Complex*16

Character
to Integer

I o r 2 DCMPLX

ICHAR

I n t e g e r
Real
Double
Complex
Complex*! 6

Complex*16
Complex*16
Complex*16
Complex*16
Complex*16

C h a r a c t e r I n t e g e r

6 ,34 ,36

7,32

en
ra
n
>-3

o^

I n t e g e r
t o Charac t e r

CHAR I n t e g e r C h a r a c t e r

CT1

Trunca t ion

Nea re s t Whole
Number

Neares t I n t e g e r

Absolute Value

Remaindering

Trans fe r of Sign

P o s i t i v e Di f fe rence

REAL(INTL(a))
DBLE(INTL(a))

See Note 8

See Note 9

(a**2)**.5

(a r**2+ai**2)** .5

See Note 11

l a l l i f a2 >= 0
- l a l l i f a2 < 0

a l - a 2 i f a l > a2
0 i f a l <= a2

AINT

ANINT'

NINT

ABS

MOD

SIGN

DIM

AINT
DINT

ANINT
DNINT

NINT
IDNINT

IABS
ABS
DABS
CABS
CDABS

MOD
AMOD
DMOD

ISIGN
SIGN
D3IGN

IDIM
DIM
DDIM

Real
Double

Real
Double

Real
Double

Integer
Real
Double
Complex
Complex* 16

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

Real
Double

Real
Double

Integer
Integer

Integer
Real
Double
Real
Double

Integer
Real
Double

Integer
Real
Double

Integer
Real
Double

9,32

10 ,16 ,35

11 ,33

12,33

33

s
s i
CO

Class of Function Definition
Number of
Arguments

Generic
Name

Specific
Name

Type of
Argument

Type of
Function Notes

Double Precision
Product

al*a2 DPROD Real Double

Choosing La rges t
Value

max(a l ,a2 , . . .) >= 2 MAX

Ĉ i

Choosing Smallest
Value

m i n (a l , a 2 , . . .)

en

C 5
•I
•<

VD
00
S3

Length

Index of a
Substring

Real Part of
Complex Argument

Imaginary Part of
Complex Argument

Conjugate of a
Complex Argument

Square Root

Length of
Character Ent i ty

Location of
Substring a2
in String al

ar

a i

(*L>-*Q

(a)**. 5

>= 2 MIN

CONJG

SQRT

MAX0
AMAX1
DMAX1

AMAX0
MAX1

MIN0
AMINl
DMINl

AMIN0
MINI

Integer
Real
Double

Integer
Real

Integer
Real
Double

Integer
Real

Integer
Real
Double

Real
Integer

Integer
Real
Double

Real
Integer

LEN

INDEX

Character

Character

Integer

Integer

REAL
DREAL

AIMAG
DIMAG

CONJG
DCONJG

SQRT
DSQRT
CSQRT
CDSQRT

Complex
Complex* 16

Complex
Complex* 16

Complex
Complex* 16

Real
Double
Complex
Complex* 16

Real
Double

Real
Double

Complex
Complex* 16

Real
Double
Complex
Complex* 16

33,34

32,34

33,34

32,34

13,32

14,32

15,16,

16,35

16,35

17,35

s
VO

z:
H
pa
i—i

en
O

o
i—i
o z

Class of Function Definition

<

en

l

Exponential

Sine

Cosine

Tangent

Arcsine

Arccosine

Arctangent

e**a

Natural Logarithm log(a)

Common Logarithm logl0(a)

sin(a)

cos(a)

tan (a)

arcs in (a)

arccos(a)

arctan(a)

arctan(al/a2)

Number of
Arguments

1

1

1

1

1

1

1

1

1

2

Gener i c
Name

EXP

LOG

LOG10

SIN

COS

TAN

ASIN

ACOS

ATAN

ATAN2

S p e c i f i c
Name

EXP
DEXP
CEXP
CDEXP

AL03
DLOG
CLOG
CDLOG

ALOG10
DLOG10

SIN
DSIN
CSIN
CDS IN

COS
DCOS
CCOS
CDCOS

TAN
DTAN

ASIN
DAS IN

ACOS
DACOS

ATAN
DATAN

ATAN 2
DATAN2

Type of
Argument

Real
Double
Complex
Complex* 16

Real
Double
Complex
Complex* 16

Real
Double

Real
Double
Complex
Complex* 16

Real
Double
Complex
Complex*16

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Type of
Func t ion

Real
Double
Complex
Complex*16

Real
Double
Complex
Complex* 16

Real
Double

Real
Double
Complex
Complex*16

Real
Double
Complex
Complex* 16

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Notes

35

18,35

18

19 ,21 ,35

19 ,21 ,35

19 ,21

20 ,22

20 ,23

20,24

20,24

10

s
Si

Class of Function Definition

Hyperbolic Sine sinh(a)

Hyperbolic Cosine cosh(a)

Hyperbolic Tangent tanh(a)

Number of
Arguments

1

1

1

Generic
Name

SINH

COSH

TANH

Specific
Name

SINH
D3INH

COSH
DCOSH

TANH
DTANH

Type of
Argument

Real
Double

Real
Double

Real
Double

Type of
Function

Real
Double

Real
Double

Real
Double

Notes

19

19

19

CTl

3

n
*<

GO

Lexically Greater
Than or Equal

Lexically Greater
Than

Lexically Less
Than or Equal

Lexically Less
Than

Logical Operations

Shifts

al >= a2

al > a2

al <= a2

al < a2

Bitwise AND

Bitwise OR

Bitwise XOR

Bitwise NOT

Shift Left

Shift Right

Shift

2

2

2

2

Any

Any

Any

1

2

2

2 or 3

LGE

LGT

LLE

LLT

Character Logical 25,34

Character Logical 25,34

Character Logical 25,34

Character Logical 25,34

AND

OR

XOR

NOT

LS

RS

SHFT

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

26,34,36

26,34,36

26,34,36

27,34,36

28,34,36

28,34,36

29,34,36

s

70

en
o

o
- 3
M s
en

<
Si

Class of Function Definition

Truncation Truncate
Left

Truncate
Right

Number of
Arguments

Generic
Name

Specific
Name

LT

RT

Type of
Argument

Integer

Integer

Type of
Function

Integer

Integer

Notes

30,34,36

30,34,36

en

g
- a

CTi

Storage Address Actual Storage
Address of
Data Item

LOC See
Note 31

Integer*4 31,34,36

en

I

CO

53

IDR4029 INTRINSIC FUNCTIONS

NOTES FOR THE TABLE OF INTRINSIC FUNCTIONS

In the following notes the names of data types are given in lowercase;
uppercase is reserved for intrinsic function names.

The generic INT discards the fractional part of its argument,
producing a truncated (unrounded) integral value. The result will
be INTEGER*2 in a program unit compiled with -INTS, and INTEGER*4
in a program unit compiled with -INTL (the default).

INTS and INTL are similar to INT, differing only in that the
result-type is determined by the function selected rather than the
compiler option in effect.

For a of type real, REAL (a) is a. For a of type integer or
double precision, REAL(a) is as much precision of a as a real
datum can contain. For a of type complex, REAL(a) is the real
part of a.

For a of type double precision, DBLE(a) is a. For a of type
integer or real, DBLE(a) is the value of â in double precision
form. For a of type complex, DBLE(a) is the real part of a in
double precision form.

CMPLX may have one or two arguments. If there is one argument, it
may be of type integer, real, double precision, or complex. If
there are two arguments, they must both be of the same type and
may be of type integer, real, or double precision.

For a of type complex, CMPLX(a) is a. For £ of type integer,
real, or double precision, CMPLX(a) is the complex value whose
real part is REAL(a) and whose imaginary part is zero.

CMPLX(al,a_2) is the complex value whose real part is REAL(al) and
whose imaginary part is REAL (a2).

DCMPLX is similar to CMPLX, except that a complex*16 number is
produced.

Every ASCII character is represented in the computer as a sequence
of eight bits ranging from 10000000 to 11111111 (octal :200 to
:377, Decimal 128 to 255). Any such sequence can be interpreted
either as an ASCII character or as an integer. CHAR and ICHAR
provide a means for converting between the two interpretations.

ICRAR operates on a single ASCII character. It returns an integer
between 128 and 255, representing the decimal equivalent of the
ASCII bit pattern for that character.

CHAR operates on any integer. If the integer is between 128 and
255, it is used directly. If the integer is not between 128 and
255, it is converted to one that is, as follows:

January 1980

SECTION 6 IDR4029

1. Truncate all but the eight rightmost bits (the
lowest-order byte).

2. Set the leftmost remaining bit to 1.

Following conversion if required, CHAR returns the ASCII character
whose bit pattern corresponds to the binary equivalent of its
argument.

The effect of the conversion is that for every integer I

CHAR(I) = CHAR(MOD(I,123) + 128)

The ASCII character set is described in Appendix D.

8 ANINT(a) is defined as:

REAL(INTL(a+.5)) if a >= 0
REAL(INTL(a-.5)) if a < 0

DNINT(a_) is defined as:

DBLE(INTL(a+.5)) if a >= 0
DBLE(INTL(a-.5)) if a < 0

9 NINT(a) and IDNINT(a) are defined as:

INT(a+.5) if a >= 0
INT(a-.5) if a < 0

10 The argument to IABS may be INTEGER*2 or INTEGER*4. The result
will be of the same type as the argument.

11 MOD yields the remainder when its first argument is divided by its
second argument. Both arguments must be of the same type; the
result will also be of that type.

The three specific functions under MOD are defined:

M0D(al,a2) = al - (INTL(al/a2) * a2)
AM0D(al,a2) = REAL(al - (INTL(al/a2) * a2))
DM0D(al,a2) = DBLE(al - (INTL(al/a2) * a2))

The result for MOD, AMOD, and DMOD is a "Division by Zero" error
when the value of the second argument is zero.

12 This function combines the magnitude of its first argument with
the sign of the second. If the value of the first argument is
zero, the result is zero, which is neither positive nor negative.

13 The value of the argument of the LEN function need not be defined
at the time the function reference is executed.

14 INDEX(al,a2) returns an integer value indicating the starting

REV. 0 6 - 1 0

IDR4029 INTRINSIC FUNCTIONS

position within the character string al of a substring identical
to string a2. If a2 occurs more than once in al, the starting
position of the first occurence is returned.

If a_2 does not occur in al, the value zero is returned. Note that
zero is returned if LEN(al) < LEN(a2) .

15 The REAL function for real-part extraction is the same specific
function that is selected when the generic function REAL is given
a complex*8 argument.

The DREAL function for real-part extraction is the same specific
function that is selected when the generic function DBLE is given
a complex*16 argument.

REAL and DREAL for real-part extraction could not be passed as
arguments in FORTRAN 77 because they are specific type-conversion
functions. To provide symmetry with AIMAG and DIMAG
imaginary-part extraction, which can be passed, F77 allows REAL
and DREAL to be passed as arguments.

16 A complex value is expressed as an ordered pair of reals, (ar,ai),
where ar is the real part and a_i is the imaginary part.

17 The value of the argument of SQRT and DSQRT must be greater than
or equal to zero. The result of CSQRT and CDSQRT is the principal
value with the real part greater than or equal to zero. When the
real part of the result is zero, the imaginary part is greater
than or equal to zero.

18 The value of the argument of ALOG, DLOG, ALOG10, and DLOG10 must
be greater than zero. The value of the argument of CLOG and DLOG
must not be (0.,0.). The result of CLOG and DLOG is the principal
value, i.e. the range of the imaginary part of the result is
-pi < imaginary part <= pi. The imaginary part of the result is
pi only when the real part of the argument is less than zero and
the imaginary part of the argument is zero.

19 All angles are expressed in radians.

20 The result will be expressed in radians.

21 The absolute value of the argument of SIN, DSIN, COS, DCOS, TAN,
and DTAN is not restricted to be less than 2*pi.

22 The absolute value of the argument of ASIN and DASIN must be less
than or equal to one. The range of the result is: -pi/2 <=
result <= pi/2.

23 The absolute value of the argument of ACOS and DACOS must be less
than or equal to one. The range of the result is:
0 <= result <= pi.

- 11 January 1980

SECTION 5 IDR4029

24 The range of the result for ATAN and DATAN is:
-pi/2 <= result <= pi/2. If the value of the first argument of
ATAN2 or DATAN2 is positive, the result is positive. If the value
of the first argument is zero, the result is zero if the second
argument is positive and pi if the second argument is negative.
If the value of the first argument is negative, the result is
negative. If the value of the second argument is zero, the
absolute value of the result is pi/2. The arguments must not both
have the value zero. The range of the result for ATAN2 and DATAN2
is: -pi < result <= pi.

25 LGE(al,a2) returns the value true if al=a2 or if al follows a2 in
the collating sequence described in American National Standard
Code for Information Interchange, ANSI X3.4-1977 (ASCII), and
otherwise returns the value false.

LGT(al,a2) returns the value true if al follows a2 in the
collating sequence described in ANSI X3.4-1977 (ASCII), and
otherwise returns the value false.

LLE(al,a2) returns the value true if al = a2 or if al precedes a2
in the collating sequence described in ANSI X3.4-1977 (ASCII), and
otherwise returns the value false.

LLT(al,a2) returns the value true if al precedes a2 in the
collating sequence described in ANSI X3.4-1977 (ASCII), and
otherwise returns the value false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length,
the shorter operand is considered as if it were extended on the
right with blanks to the length of the longer operand.

The result-type for LGE, LGT, LLE, and LLT will be L0GICAL*2 in a
program unit compiled with -LOGL, and L0GICAL*4 in a program unit
compiled with -LOGS.

26 AND, OR, and XOR perform the bitwise logical function named on a
list of long and short integers. The result will be a long
integer if any argument is long; otherwise it will be a short
integer.

When short and long integers are mixed, the short integers will be
sign-extended, not zero-extended.

27 Performs a bitwise logical NOT function (ones complement) on a
long or short integer. The result has the type of the argument.

28 LS and RS take two arguments; each argument may be either a long
or a short integer. These arguments are called ARG1 and ARG2 in
the following.

LS shifts ARG1 to the left by the number of bits specified in
ARG2. The result has the type of ARG1 - that is, no type-change
occurs. Vacated places are filled with zeroes. If ARG2 is not

REV. 0 6 - 1 2

IDR4029 INTRINSIC FUNCTIONS

positive, no shift occurs.

RS is identical to LS, except that the shift is to the right.

29 SHFT is similar to LS and RS, except that it can shift in either
direction, and can perform two shifts rather than one. The
additional shift occurs if a third integer argument, ARG3, is
g iven.

If ARG2 is negative, the shift is to the left; if it is positive,
the shift is to the right; if it is zero, no shift occurs.

If ARG3 appears, the shift specified by it will be carried out
after the shift specified by ARG2 is complete. The rules are the
same as for the ARG2 shift.

30 LT takes two arguments; each argument may be either a long or a
short integer. These arguments are called ARG1 and ARG2 in the
following.

LT preserves the left ARG2 bits of ARG1, and sets the rest to zero
(left truncation). The result has the type of ARG1 - that is, no
type-change occurs. If ARG2 is <= 0, no bits are preserved.

RT is identical to LT, except that the right ARG2 bits are
preserved.

31 LOC operates on an item of any data type except CHARACTER and
L0GICAL*1. The result is an INTEGER*4 value representing the
memory address where the first byte of the data item is located.

32 An integer result produced by this function will be INTEGER*2 in a
program unit compiled with -INTS, and INTEGER*4 in a program unit
compiled with -INTL.

33 When this function operates on integers, the arguments may be a
mixture of INTEGER*2 and INTEGER*4. The result will have the type
of the longest argument.

A special case arises when IABS, MOD for integers, ISIGN, or IDIiM
is passed as an actual argument to a subprogram. In this case,
the invoking program unit has no opportunity to examine the
argument list on which the function will operate. Therefore it
cannot select the version of the function that will implement the
above rule. For compatibility with the FORTRAN 77 standard, the
following rule is used instead:

When IABS, MOD for integers, ISIGN, or IDIM is passed as an actual
argument to a subprogram, the function passed will accept and
produce INTEGER*4 values if the invoking program unit was compiled
with -INTL, and INTEGER*2 values if it was compiled with -INTS.
This is the only case in which integer types cannot be mixed in
the argument list of an integer intrinsic function.

- 13 January 1980

SECTION 6 IDR4029

34 This function cannot be passed as an argument to a subprogram.

35 The specific function accepting the C0MPLEX*16 data type is an F77
extension.

36 This function is an F77 extension.

REV. 0 6 - 1 4

IDR4029 F77 COMPILER

SECTION 7

USING THE F77 COMPILER

INTRODUCTION

Prime's FORTRAN 77 compiler accepts a source program meeting the
FORTRAN 77 or F77 standard. It can output a source listing, an error
listing, an object file, and various messages. Errors are printed at
the terminal as the compiler detects them.

This section tells:

• How to invoke the compiler

• How to specify options to the compiler

• The significances of the various messages that are printed
during compilation

• The meanings of the various compiler options

INVOKING THE COMPILER

The FORTRAN 77 Compiler is invoked by the F77 command to PRIMOS:

F77 pathname [-option 1] [-option 2] . . . [-option n]

pathname The pathname of the FORTRAN 77 source program to be
compiled.

options Mnemonics for the options controlling compiler functions.

All mnemonic options must be preceded by a dash "-". Example:

F77 TEST1 -RANGE -DEBUG -LISTING

will cause TEST1 to be compiled with the options given.

COMPILER ERROR MESSAGES

For each error encountered in the program, an error message will be
printed at the terminal and in the source listing if one exists. The
general format of an error message is:

January 1980

SECTION 7 IDR4029

ERROR XXX SEVERITY y BEGINNING ON LINE zzz
explanation

xxx Error Code

_y Level of severity

zzz Line number where error begins

explanation Description of the error, and possible remedies.

The significance of the severity code is:

Severity Description

1 Warning.

2 Error that has been
corrected.

3 Uncorrected error - prevents
optimization and code
generation.

4 Error that prevents further
compilation.

FORTRAN 77 Error Messages are self-explanatory. They are not listed in
this guide, since such a listing could only repeat information already
given in the individual messages.

END-OF-C0MPILATI0N MESSAGE

After the compilation process is complete, the compiler prints an
end-of-compilation message at the terminal. Its format is:

xxxx ERRORS (F77-REV ZZ.Z)

xxxx The number of compilation errors (0000 indicates a
successful compilation)

ZZ.Z The current revision number of the F77 compiler

After compilation, control returns to the PRIMOS level.

REV. 0

IDR4029 F77 COMPILER

COMPILER OPTIONS

The available compiler options can be categorized as follows:

• Specify the source file

• Specify the existence and contents of the source listing

• Specify the error and statistics files

• Specify the existence and properties of the object code

Compiler options generally come in pairs: for each one, there is a
converse option having the opposite effect. Most option pairs direct
the compiler to do/not-do some action. A few present a choice between
two actions. One member of each pair is always the default.

In the following list, each option is given along its converse. The
Prime-supplied default is underlined. Commonly used options are marked
with an asterisk: new users should skip over the unasterisked options.

Some options require an argument in addition to the option
specification. The argument follows the option, and is not preceded by
a dash. Options may be given in any order.

Table 7-1 lists the options in the order that they are discussed below.
At the end of this section, Table 7-2 lists them alphabetically with
their abbreviations, to provide a quick reference.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with the default options -INTL, -LOGL, -NODOl, and -DYNM.

Specify the Source File

The source file is usually designated by pathname immediately after the
F77 command. Alternatively, it may be given in an option. Lowercase
letters in the source can be automatically mapped to uppercase before
compilation.

January 1980

SECTION 7 IDR4029

Table 7-1. Compiler Options

Specify the Source File

-S and -I
-UPCASE / -LCASE

Give name of source file
Convert source file to upper case

Specify the Existence and Contents of the Source Listing

-L [argument]
-XREF / -NOXREF
-EXPLIST / -NOEXPLIST
-OFFSET / -NOOFFSET

Controls existence of listing file
Cross reference in source listing
Assembly code in source listing
Offset map in source listing

Specify the Error and Statistics Files

-ERRLTST / -NOERRLIST
-ERRTTY / -NOERRTTY
-SILENT / -NOSILENT
-DCLVAR / -NODCLVAR
-STATISTICS / -NOSTATISTICS

Errors-only listing file.
Error messages at terminal
Suppress Warning Messages
Flagging of undeclared variables
Print compilation statistics

Specify the Existence and Properties of the Object Code

* -B [argument] Controls
-BIG / -NOBIG Controls
-DYNM / -SAVE Controls
-INTL / -INTS Controls
-LOGL / -LOGS Controls
-64V / -321 Controls

* -DEBUG / -NODEBUG Controls
-D01 / -N0D01 Controls

* -OPTIMIZE / -NOOPTIMIZE Controls
-PRODUCTION / -NOPRODUCTION Controls

* -RANGE / -NORANGE ~ " Inserts

existence of object file
dummy array handling
dynamic/static allocation
type INTEGER storage default
type LOGICAL storage default
addressing mode
generation of debugger code
type of DO-loops
optimization
generation of debugger code
range-checking code

* Indicates options most useful to new users.

Prime-supplied defaults are underlined.

REV. 0

IDR4029 F77 COMPILER

• -SfOURCE] pathname and -I[NPUT] pathname

Either of these can be used to designate the source file to be
compiled, as an alternative to naming the file immediately after the
F77 command. The following are equivalent:

F77 pathname -DYNM -INTL

F77 -DYNM -INTL -I pathname

F77 -INTL -S pathname -DYNM

The pathname must not be designated more than once.

• -UPCASE / -LCASE

Controls mapping of lowercase to uppercase letters in a source program.

UPCASE: Any lowercase letters in the source will be treated as
uppercase by the compiler, except in Hollerith and CHARACTER constants.

LCASE: Lower and uppercase letters remain distinct. Keywords must be
in upper case only.

Specify the Existence and Contents of the Source Listing

The F77 compiler's primary output to the programmer is the source
listing. When the -L option is given, a basic source listing is
created, containing:

• Date and time of compilation

• Options in effect

• Source text

• External entry points

• Symbol-Table Listing

• List of errors

Additional options can be given, to cause additional data to be
inserted into the source listing: a cross reference, offset map, or
pseudo-assembly code listing may be included, if such an option is
given but no source listing was specified, -L YES will be assumed.

January 1980

SECTION 7 IDR4029

• * -L[ISTING] [argument]

Controls creation of the source listing file. The argument may be:

pathname Listing will be written to the file pathname.

YES Listing will be written to a file named L_program,
where program is the name of the source file.

TTY The listing will be printed at the user terminal.

SPOOL The listing will be spooled directly to the line
printer. Default SPOOL arguments are in effect.

NO No listing file will be generated.

When no -L option is given, -L NO will be presumed. When -L is given
with no argument, -L YES will be presumed.

• * -XREF / -NOXREF (Implies -L)

Controls generation of a cross reference

XREF: A cross reference will be appended to the source listing. A
cross reference lists, for every variable, the number of every
line on which the variable was referenced.

NOXREF: No cross reference will be generated.

• -EXPLIST / -NOEXPLIST (Implies -L)

Inserts a pseudo-assembly code listing into the source listing.

EXPLIST: Each statement in the source will be followed by the
pseudo-PMA (Prime Macro Assembler) statements into which it was
compiled. For information on PMA, see The Assembly Language
Programmer's Guide, FDR3059.

NOEXPLIST: No assembler statements are printed.

• -OFFSET / -NOOFFSET (I m p l i e s -L)

Appends an offset map to the source listing.

OFFSET: An offset map is appended to the source listing. For each
statement in the source program, the offset map gives the offset in the
object file of the first machine instruction generated for that
statement.

NOOFFSET: No offset map is created.

REV. 0

IDR4029 F77 COMPILER

Specify the Error and Statistics Files

All error messages are automatically included in the source listing if
one is created. A separate errors-only file can be created. All error
messages are normally printed at the terminal; this can be prevented.
All warning messages can be suppressed. Undeclared variables are
usually compiled without comment from the compiler, but they can be
flagged as errors.

Compiler statistics can be printed at the terminal after each phase of
compilation, but not to a user file other than a COMOUTPUT file.

• -ERRLIST / -NOERRLIST

Controls generation of an errors-only file.

ERRLIST: A listing file will be generated, named as described under -L
YES, which contains only the error messages for the compilation. This
option has no effect when a full source listing is specified or
implied.

NOERRLIST: No such file is generated. Does not override -L.

• -ERRTTY / -NOERRTTY

Controls printing of error messages at the terminal.

ERRTTY: Error messages will be printed at the terminal during
compilation.

NOERRTTY: No error messages will be printed. They will still be
included in the source listing file, if any.

• -SILENT / -NOSILENT

Suppresses WARNING messages.

SILENT: Level 1 Error Messages will not be printed at the terminal,
and will be omitted from any listing file.

NOSILENT: Level 1 Error Messages are retained.

• -DCLVAR / -NODCLVAR

Controls flagging of undeclared variables.

DCLVAR: A warning will be generated for any variable that is used in
the program, but not included in a type-statement.

NODCLVAR: No such warning will be generated.

7 - 7 January 1980

SECTION 7 IDR4029

• -STATISTICS / -NOSTATISTICS

Controls printout of compiler statistics.

STATISTICS: A list of compilation statistics is printed at the
terminal after each phase of compilation. For each phase the list
contains:

• DISK: Number of reads and writes during the phase,

excluding those needed to obtain the source file.

• SECONDS: Elapsed real time.

• SPACE Internal buffer space used for symbol table, in 1SK

byte units.

• PAGING Disk I/O time.

• CPU CPU time in seconds, followed by the clock time
when the phase was completed.

NOSTATISTICS: Statistics are not printed.

Specify the Existence and Properties of the Object Code

For a given source program, the compiler can produce a variety of
object programs or none at all, depending on the options given. The
areas open to programmer control are:

• Creation of the object file

• Storage allocation and addressing

• Compiler augmentation of the object code

Creation of the Object File: The -B option controls the existence and
naming of the object file, but not the properties it will have.

• * -B[INARY] [argument]

The argument may be:

pathname Object code will be written to the file pathname.

YES Object code will be written to the file named
Bjprogram, where program is the name of the source
file.

REV. 0

NO

IDR4029 F77 COMPILER

No binary file will be created. Specified when only a
syntax check is desired.

When no -B option is given, or -B without an argument is given, -B YES
will be presumed.

Storage Allocation and Addressing: By giving appropriate options, the
programmer can cause compiled subprograms to accept array arguments
longer than a segment, and can determine the data storage mode (static
or dynamic) and the addressing mode (64V or 321) to be used in the
object file.

Any type INTEGER or LOGICAL data item which does not have a *(length)
explicitly declared in a type-statement will be assigned a default
length by the compiler. The defaults can be changed by two compiler
options.

• -BIG / -NOBIG

Determines code generated for dummy array references in a subprogram.

BIG: A dummy array can become associated with any array.

NOBIG: A dummy array can become associated only with an array that
does not cross a segment boundary.

See ARRAYS AS ARGUMENTS in Section 5 for details.

• -DYNM / -SAVE

Determines data-storage mode: dynamic or static.

Dynamic-storage variables are kept in the stack. At each call to a
subprogram, space for its dynamic variables is allocated. At RETURN,
the space is freed, and the data lost.

Static-storage variables are kept in the link frame. They exist at all
times, and maintain their values until the program terminates.

All variables mentioned in a SAVE statement or initialized in a DATA or
type-statement are static. All variables in COMMON are static. The
-DYNM / -SAVE option affects only variables not SAVEd or in COMMON.

DYNM: All variables not SAVEd or in COMMON are allocated dynamic
storage.

SAVE: All variables are allocated static storage.

DYNM is used principally to save space in user memory.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -DYNM.

7 - 9 January 1980

SECTION 7 IDR4029

• * -INTL / -INTS

Determines default lengths for type INTEGER data items whose length is
not explicitly declared.

INTL: Every type INTEGER data item, including constants and
parameters, will be compiled as INTEGER*4 unless the item has been
explicitly declared INTEGER*2 in a type-statement.

INTS: Every such data item will become INTEGER*2 unless it is
explicitly declared INTEGER*4. A constant will become INTEGER*4 under
-INTS if:

1. Its value lies outside the INTEGER*2 range.

2. Its representation, including leading zeroes, contains more
than 5 decimal or 6 octal digits.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -INTL.

• -LOGL / -LOGS

Determines default lengths for type LOGICAL data items whose length is
not explicitly declared, and for the logical constants.

LOGL: Data items declared type LOGICAL without no *(length) specified
become L0GICAL*4.

LOGS: Such data items become L0GICAL*2.

Logical variables can also be declared L0GICAL*1, but cannot be caused
to default to that length.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -LOGL.

• -64V / -321

These determine the addressing mode to be used in the object code. 64V
is a segmented virtual addressing mode for 16-bit machines. 321 is a
segmented virtual mode which takes maximum advantage of the 32-bit
architecture of Prime's more advanced models (P450 and up). R and S
modes (relative and sectored addressing) are not available for F77.

REV. 0 7 - 1 0

IDR4029 F77 COMPILER

Augmented Object Code

When no augmented-code options are given, the source program is
compiled statement by statement, and the resulting object code becomes
the object file. Alternatively, the compiler can optimize the object
code, and can add additional code to provide range checking, one-trip
DO-loops, or the capacity to run under the symbolic debugger.

• * -DEBUG / -NODEBUG

Controls generation of code for the debugger.

DEBUG: The object file is modified so that it will run under the
symbolic debugger. Execution time is increased. The code generated
will not be optimized.

NODEBUG: No debugger code is generated.

• -D01 / -NODOl

Controls the type of DO-loop which the compiler will produce.

D01: All DO-loops will be of the FORTRAN type, and all FTN
restrictions on DO-loops will be enforced. This option is provided for
upward compatibility of FTN programs.

NODOl: F77 DO-loops will be produced. These are described in Section
3; they differ significantly from those in FTN.

The F77 compiler acts as a standard-conforming compiler only when it is
invoked with -NODOl.

• * -OPTIMIZE / -NOOPTIMIZE

Controls the optimization phase of the compiler.

OPTIMIZE: The object code will be optimized. Optimized code runs more
efficiently than non-optimized code, but takes somewhat longer to
compile.

NOOPTIMIZE: Optimization does not occur.

11 January 1980

SECTION 7 IDR4029

• -PRODUCTION / -NOPRODUCTION

Alternative option controlling code for the debugger.

PRODUCTION: Similar to DEBUG, except that the code generated will not
permit insertion of statement break points. Execution time increases
less than when DEBUG is given.

NOPRODUCTION: Production-type code is not generated.

• * -RANGE / -NORANGE

Controls error checking for out-of-bounds values of array subscripts
and character substring indexes.

RANGE: Error-checking code is inserted into the object file. Should
an array subscript or character substring index take on a value outside
the range specified when the referenced data item was declared, an
error will be generated.

NORANGE: Out-of-bounds values will not generate an error message. The
program will be more vulnerable to errors, but will execute more
quickly.

OPTION ABBREVIATIONS

The F77 compiler options may be abbreviated, as follows:

The abbreviations -L, -B, -I, and -S stand for -LIST, -BINARY, -INPUT,
and -SOURCE, respectively, regardless of what other abbreviations are
used.

Except where the above rule takes precedence, the abbreviation for any
compiler option is the shortest string of leftmost characters from the
option's name that uniquely identify the option. Any number of
additional characters, up to the complete name, may also be given.

These rules produce the abbreviations shown in Table 7-2. The table is
also intended to provide a quick alphabetical reference for those
already familiar with the compiler options.

REV. 0 7 - 1 2

IDR4029 F77 COMPILER

Table 7-2. Summary of Compiler Options and Abbreviations.
(Defaults are underlined.)

Option Abbreviation Significance

-BIG -BIG Boundary-spanning code

-BINARY -B Creation of object file

-DCLVAR -DC Flag undeclared variables

-DEBUG -DE Debugger code

-D01 -DO FTN DO-loops

-DYNM -DY Dynamic storage default

-ERRLIST -ERRL Create errors-only file

-ERRTTY -ERRT Write errors to terminal

-EXPLIST -EX Expanded source listing

-INPUT -I Designate source file

-INTL -INTL Long integer default

-INTS -INTS Short integer default

-LCASE -LC No source-file case conversion

-LIST -L Creation of source listing

-LOGL -LOGL Long logical-data default

-LOGS -LOGS Short logical-data default

-NOBIG -NOB No boundary-spanning code

-NODCLVAR -NODC Don't flag Undeclared Variables

-NODEBUG -NODE No debugger code

-NODOl -NODO F77 DO-Loops

-NOERRLIST -NOERRL No errors-only file

-NOERRTTY -NOERRT No errors to terminal

-NOEXPLIST -NOEX No expanded source listing

- 13 January 1980

SECTION 7 IDR4029

Table 7-2. Summary of Compiler Options and Abbreviations (continued)
(Defaults are underlined.)

Option Abbreviation Significance

-NOQFFSET -NOOP

-NOOPTIMIZE -NOOP

-NOPRODUCTION -NOP

-NORANGE -NOR

-NOSILENT -NOSI

-NOSTATTSTICS -NOST

-NOXREF -NOX

-OFFSET -OF

-OPTIMIZE -OP

-PRODUCTION -P

-RANGE -R

-SAVE -SA

-SILENT -SI

-SOURCE -S

-STATISTICS -ST

-UPCASE -U

-XREF -X

-321 -3

-64V -6

No offsets in source listing

Don't optimize object code

No production code

No range checking

Don't suppress warning messages

Don't print statistics

Don't generate cross reference

Offsets in source listing

Optimize object code

Generate production code

Check subscript ranges

Static storage default

Suppress warning messages

Designate source file

Print compiler statistics

Convert to uppercase

Generate cross-reference

Produce 321 mode code

Produce 64V mode code

REV. 0 14

IDR4029 OPTIMIZING

SECTION 8

OPTIMIZING F77 PROGRAMS

OPTIMIZING F77 PROGRAMS

This section presents some programming hints for improving the
performance of F77 programs. Some of them are merely reminders of good
coding practice; others take advantage of implementation techniques in
the F77 compiler. All offer some speedup in program execution.

Referencing Multi-Dimensional Arrays

Reference memory as sequentially as possible. For multi-dimensional
arrays, the leftmost subscript varies the fastest in FORTRAN 77. When
addressing large portions of an array, paging time and working set size
can be significantly reduced by indexing the leftmost subscript the
fastest (e.g., in the innermost loop). Thus,

DIMENSION ARRAY (100,100)
DO 20 I = 1, 100

DO 10 J = 1, 100
ARRAY (J, I) =3.0

10 CONTINUE
20 CONTINUE

is more efficient than accessing the array as ARRAY (I, J) = 3.0.

If the program can be coded CLEANLY without multi-dimensional arrays,
memory addressing can be more efficient. For each dimension over one,
this saves one 'multiply' per effective address calculation; i.e.,
number-of-multiplies = number-of-dimensions - 1. For instance, the
example above could be written as:

DIMENSION ARRAY (100,100)
DIMENSION INITARRAY (1)
EQUIVALENCE (ARRAY(1,1), INITARRAY(1))

DO 10 I = 1, 10000
INITARRAY(I) =3.0

10 CONTINUE

saving considerable CPU time.

Load Sequence and Memory Allocation

Paging time can be significantly reduced by loading subprograms by
frequency of use (rather than, say, alphabetically). The main program
must always be loaded first for SEG to work properly.

January 1980

SECTION 8 IDR4029

A suitable loading scheme would allocate memory as:

MAIN

END

most common subroutines

occasionally used subroutines

infrequently used subroutines

Paged memory fragmentation can be reduced by loading routines on page
boundaries using SEG's P/LO command.

In subroutine libraries, the top down tree structure must be preserved
if 'reset force load* is in use.

This ordering method may also be used to order COMMON blocks in memory
by frequency of use.

See The LOAD and SEG Reference Guide for details on these
recommendations.

Function Calls

Eliminate redundant invocations of user-supplied functions. For
example:

TEMP = FUNC(X)
A = TEMP * TEMP

is faster than:

A = FUNC(X) * FUNC(X)

Make sure that the function has no side effects which might modify the
argument(s) or anything else in the environment.

This practice is not necessary with intrinsic functions unless
optimization of the program unit is prevented by the -NOOPTIMIZE

REV. 0

IDR4029 OPTIMIZING

compiler option, because the F77 optimizer eliminates redundant
intrinsic function calls.

Input/Output

Significant speed improvement in raw data transfers can be achieved by
using the equivalent IOCS or file system routine instead of formatted
input/output. For example:

INTEGER TEXT(40)
READ (5, 20, END= 99) TEXT

20 FORMAT(40A2)

is slower than

INTEGER TEXT(40)

CALL RDASC(5, TEXT, 40, $99)

but the fastest yet is...

INTEGER TEXT(40), CODE
CALL RDLIN$(1, TEXT, 40, CODE)
IF(CODE .NE. 0) /* Any error?
* GOTO 99 /* Yes, go process error.

There are also routines for reading/writing octal, decimal, and
one-unit hexadecimal numbers from/to the terminal. For example,
CALL TIHEX(N) will read a hexadecimal integer from the terminal into
the short integer named N. For printing out text efficiently, use the
TNOU/TNOUA routines. See The PRIMOS Subroutines Reference Guide for
more specific information about these lower level routines.

Statement Sequence

The compiler can do register tracking, but cannot reorder statements.
For example, given the sequence:

A = B
X = Y

R = B

the generated code is:

LDA B
STA A
LDA Y (6 instructions long)
STA X
LDA B
STA R

If the source i s rearranged to :

3 - 3 January 1980

SECTION 8 IDR4029

A = B
R = B
X = Y

the generated code i s reduced to :

LDA B
STA A
STA R (5 instructions long)
LDA Y
STA X

Parameter Statements

Initializing named constants via PARAMETER statements allows the
compiler to perform constant-folding optimizations, resulting in faster
execution of statements using the named constants. The compiler does
not fold normal variables initialized by DATA statements into
constants.

Inefficient Library Calls

Some applications library routines are not optimized for time-critical
operations. The get and store character routines (GCHR$A, etc.) are
convenient, but comparatively slow. Some applications library routines
are by definition slow, because they use lower-level routines which can
more efficiently be called directly. Avoid using the MAX and MIN
functions when execution time must be minimized.

Applications library subroutines are designed to perform acceptably at
any task for which they might be called. When one particular task is
often required in a program, a user-supplied routine which is maximally
efficient at that one task can be substituted. See Section 5 and the
EXTERNAL Statement in Section 3.

Remember the 80/20 rule, which states: "80 percent of a program's time
is spent in 20 percent of the code" (exact numbers subject to debate).
Therefore, standard library routines are adequate in the
non-time-critical 80 percent of the program.

Statement Functions and Subroutines

Use statement functions instead of FUNCTION subprograms when practical.
This eliminates a lengthy PCL/PRTN sequence. Try to minimize the
number of arguments passed to and from a statement function, function,
or subroutine.

REV. 0

TDR4029 OPTIMIZING

Integer Divides

When dividing a non-negative integer by a power of two, use the RS
(right shift) binary intrinsic function. For example:

I = RS(J, 3)

Is much faster than:

I = J / 8

Use of the Compiler's -DYNM option

F77 programs run faster, better, and cleaner when local variables are
placed in the stack through the -DYNM option (the default). These
variables are not guaranteed to be valid after a return.

Conclusion

These are some of the more common guidelines to keep in mind while
programming in Prime FORTRAN 77. If you keep these ideas in mind while
writing, or while 'fine tuning' FORTRAN 77 programs, your programs will
generally be smaller and faster. Some of these rules are not
necessarily permanent. As Prime FORTRAN 77 evolves more and more
optimizations, the user will have more freedom to choose coding styles.

Generally it is easier to apply these techniques at initial coding
time, as opposed to 'going back and optimizing'. While some of these
changes can be done easily with a few Editor tricks, others may require
extensive changes to the source code.

Only specific techniques which can be described fairly briefly are
mentioned in this section. Many other examples of good programming
practice, and an excellent discussion of the more general aspects of
good programming, appear in the following text:

Kernighan and Plauger, The Elements of Programming Style,
McGraw-Hill, 1974

January 1980

TDR4029 CONVERSION

APPENDIX A

CONVERTING FTN PROGRAMS TO F77

The conversion of FTN programs to F77 is in general straightforward.
The techniques required for such a conversion are described in this
section.

The relative simplicity of converting FTN programs to F77 results from
two factors:

• The designers of FTN made use of preliminary documents released
by ANSI during the development of FORTRAN 77. The information
in these documents was used to make FTN's extensions to
FORTRAN 66 identical to those of the future FORTRAN 77 wherever
this could be accomplished without violating the FORTRAN 66
standard.

• F77 includes all FTN constructs, except the obsolete TRACE
statement, that are absent from but compatible with FORTRAN 77.

The result is that many FTN program units can be compiled in F77 with
no changes. Most of the rest can be converted with only minor changes.

The rare program unit which cannot easily be converted to F77 can
usually be left in FTN form and called by other units that are written
in F77. See USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM, below.

METHODOLOGY OF PROGRAM CONVERSION

Any project converting FTN programs to F77 should have available:

• This guide

• The Prime User's Guide

• The FORTRAN IV Reference Guide, FDR3057

• The ANSI Standard for FORTRAN 77

Conversion of a program to F77 need not be an all-or-none process. Due
to the similarity of FTN and F77, each unit of an FTN program can be
dealt with separately when the program as a whole is converted.

The first step in converting an FTN program unit to F77 is to compile
it in F77 and see what, if any, error messages result. Due to the
detailed and often prescriptive information given by an F77 error
message, the messages produced should give a fairly complete picture of
the changes needed.

The second step is to search the FTN program unit for constructs which

A - 1 January 1980

APPENDIX A IDR4029

are common to and syntactically the same in FTN and F77, and hence
generate no syntax errors, but which have different requirements or
results in the two languages due to differences between the ANSI
standards. Such constructs are called "optionally, acceptable FTN
constructs" and "reimplemented FTN constructs." These terms are
defined, and all such constructs are described, below under PRODUCING
AN F77-C0MPATIBLE PROGRAM UNIT.

The first and/or second steps should be iterated until the program unit
compiles correctly with all optionally acceptable and reimplemented
constructs dealt with as necessary.

The third step is a thorough check of the converted program unit.
Before it is accepted as correct, it should pass the same tests it was
required to pass before being accepted in its original version.

Caution

The fact that a program unit compiles without error in F77 does
not mean it will produce the same results in F77 that it did in
FTN. Identity of results can be achieved only if all
optionally acceptable and reimplemented constructs have been
correctly dealt with.

DEGREES OF PROGRAM UNIT CONVERSION

Conversion of a program unit to F77 is not an all-or-none matter.
Three degrees of conversion of an FTN program unit can be
distinguished:

• The unit may be left in FTN, but reference and be referenced by
other units that are in F77. This conversion is contextual -
the unit per se remains an FTN program unit.

• The unit may be recompiled in F77, but retain certain optionally
acceptable FTN constructs that violate the FORTRAN 77 standard.
The F77 compiler will compile them correctly only if it is
invoked with appropriate options, as described below. A program
unit of this type is termed an F77-compatible program unit.

• The unit may be completely converted to standard-conforming F77.
It is then termed an F77-standard program unit.

There is no need for all units of a converted program to be converted
to the same degree.

USING AN FTN PROGRAM UNIT IN AN F77 PROGRAM

An FTN program unit may reference and be referenced by an F77 program
unit. The comments in Section 1 under INTERFACE WITH OTHER LANGUAGES
apply. A few additional restrictions must also be kept in mind:

REV. 0

IDR4029 CONVERSION

• An F77 function returning a C0MPLEX*8 value cannot be referenced
by an FTN program unit, nor can an FTN function returning a
C0MPLEX*8 value be referenced by an F77 program unit.

• Data of types which exist in F77 but not in FTN cannot be passed
as arguments.

• An F77 subroutine cannot use the F77 alternate return mechanism
(i.e. RETURN (expression)) if it will be called by an FTN
program unit. The F77 subroutine must use the old-style
alternate mechanism (i.e. GO TO (dummy variable)).

Any program unit for which no modifications to use the added power of
F77 are contemplated, and which can be invoked by an F77 program unit,
can be left in FTN indefinitely.

No F77 program unit can reference or be referenced by any program unit
that was compiled in R-mode. An FTN unit in R-mode must be recompiled
into V-mode before it can become part of an F77 program. A few rarely
used R-mode FTN constructs are not available in V-mode. See below
under Unsupported FTN Constructs.

PRODUCING AN F77-COMPATIBLE PROGRAM UNIT

The information needed to convert an FTN program unit to an
F77-compatible program unit falls into four categories:

• Constructs that are compiled differently by the FTN and F77
compilers, but which will be compiled in the FTN manner by the
F77 compiler _if_ the compiler is invoked with appropriate options
(Optionally acceptable FTN constructs) .

• Constructs that are compiled differently by the FTN and F77
compilers, and which cannot be compiled in the FTN manner by the
F77 compiler (Reimplemented FTN constructs).

• Constructs that exist in FTN but not in F77 (Unsupported FTN
constructs).

• Constructs that exist in FTN and are not part of FORTRAN 77, but
have been added to F77 for compatibility (Obsolete FTN
constructs).

Optionally Acceptable FTN Constructs

The various compiler options mentioned below are fully defined in
Section 7.

The optionally acceptable FTN constructs, and their F77 versions, are
as follows. In each case, the F77 version conforms to the FORTRAN 77
standard, while the FTN version does not.

January 1980

APPENDIX A IDR4029

FTN DO-Loops; An FTN DO-loop always executes once, and permits
extended DO-ranges, while an F77 DO-loop can execute zero times and
forbids extended DO-ranges. This difference can be insidious because
all FTN DO-loops are syntactically correct in F77. There are also
other differences, but these do not affect program unit conversion.
The two types of loop are fully compared under the DO Statement in
Section 3.

To cause the F77 compiler to produce FTN-type DO-loops, invoke it with
the -D01 option.

Short Integers; In FTN, the type INTEGER without a * (length)
specification is synonymous with INTEGER*2 (short integer) and integer
constants are stored as INTEGER*? unless they are too big or contain
too many digits. (See Section 2.) In F77, INTEGER is synonymous with
INTEGER*4 (long integer) and integer constants are stored as INTEGER*4.

To cause the F77 compiler to produce short integers in the manner of
the FTN compiler, invoke it with the -INTS option.

The FTN compiler has the -INTL option, which causes it to treat integer
data in the manner described for F77. A program unit that was normally
compiled with -INTL in FTN requires no special action regarding integer
data when converted to F77.

Short Logical Data; In FTN, logical data always occupies two bytes
(L0GICAL*2); there is no L0GICAL*4 type. In F77, the type LOGICAL
without a *(length) specification is synonymous with L0GICAL*4, and
logical constants are stored as L0GICAL*4.

To cause the F77 compiler to produce short logical data (except where
L0GICAL*4 has been explicitly specified) invoke it with the -LOGS
option.

Static Storage Default; Both the FTN and F77 compilers offer the
-DYNM/-SAVE option. In FTN, the default is -SAVE, so that all data is
static. In F77, the default is -DYNM, so that all data is dynamic
unless explicitly declared static. This dynamic storage property is
required by the FORTRAN 77 standard.

If the correct operation of an FTN program unit is dependent on some or
all of its data being static by default, the -SAVE option must be given
explicitly when it is compiled in F77.

A program unit that was normally compiled with -DYNM in FTN requires no
special action regarding storage class when converted to F77.

REV. 0

IDR4029 CONVERSION

Reimplemented FTN Constructs

Most of the effort required in converting an FTN program unit to F77
will concern reimplemented constructs. Each instance of such a
construct must be examined, and modified if necessary, to be sure it
will produce the results desired when run under F77.

The reimplemented FTN constructs, and their F77 versions are as
follows. In each case where standard-conformance is involved the F77
version conforms to the FORTRAN 77 standard, while the FTN version
conforms to the FORTRAN 66 standard.

Note

Most reimplemented constructs are syntactically identical in
FTN and F77. No error messages will result when such
constructs are encountered: they must be found by inspecting
the source code.

Listing Control: In FTN, the interaction between the compiler options
that create the source listing and the in-program statements that turn
source listing generation on and off is somewhat different than in F77.
The two charts below illustrate the difference. Note that in F77, FULL
LIST is an obsolete synonym for LIST.

FTN

NO LIST

LIST

FULL LIST

-LIST NO

NO LISTING

NO LISTING

NO LISTING

-LIST YES

NO LISTING

NORMAL LISTING

FULL LISTING

-EXPLIST

FULL LISTING

FULL LISTING

FULL LISTING

F77

NO LIST

LIST

FULL LIST

-LIST NO -LIST YES

NO LISTING NO LISTING

NO LISTING NORMAL LISTING

NO LISTING NORMAL LISTING

-EXPLIST

NO LISTING

FULL LISTING

FULL LISTING

Global Mode: FTN assigns the global mode to those names that are not
explicitly typed and whose first appearance in the program follows the
global mode statement. F77 assigns the global mode to all names that
are not explicitly typed, whether or not they follow the global mode
statement.

January 1980

APPENDIX A IDR4029

Intrinsic Functions; FTN treats IFIX, FLOAT, and IDINT as generic
functions, not restricting their argument to a particular type. F77
provides the INT and REAL generic functions, but treats IFIX, FLOAT,
and IDINT as specific functions requiring a particular type.

FTN allows L0GICAL*2 arguments in the following intrinsics: LS, RS,
SHFT, LT, RT, AND, OR, NOT, and XOR. F77 allows only INTEGER*2 and
INTEGER*4 arguments.

FORTRAN 77 introduces a number of new intrinsic functions. Their names
may conflict with those of user-supplied subprograms. To cause such a
duplicate name to refer to the user-supplied subprogram, specify it in
an EXTERNAL statement. The similarly-named intrinsic will then be
unavailable to that program unit.

Intrinsics in Constant Expressions; FTN allows a subset of the
intrinsic functions in constant expressions. F77 does not allow this
practice.

Input/Output; In FTN, an unformatted sequential file must consist of
fixed-length records. In F77, such a file may consist of either fixed-
or varying-length records.

In FTN, BACKSPACE works only on tape files. In F77, it will work on
all formatted sequential files and on fixed-length unformatted
sequential files.

In FTN, a READ or WRITE can access more than one record. In F77, a
READ or WRITE always accesses a single record (slash editing excepted).

The method for increasing maximum record length has been greatly
simplified in F77. Use of ATTDEV is no longer required. The F77
method is described under INCREASING MAXIMUM RECORD LENGTH in Section
4.

Extra Parentheses in I/O Statements; FTN ignores extra parentheses in
I/O lists, while F77 considers them syntax errors. Prohibiting the
extra parentheses prevents certain ambiguities which could otherwise
arise in an I/O list.

Blanks in Format Lists; FTN allows blanks as well as commas to
separate format-list descriptors. F77 ignores blanks in format lists
unless they are in a character or Hollerith constant.

Slash Edit-Control Descriptor; In FTN, execution of the statement:

WRITE (N,100)
100 FORMAT (/)

REV. 0

IDR4029 CONVERSION

will cause one blank record to be written. In F77, two blank records
will be written.

STOP and PAUSE Statements: In FTN, the number (if any) printed by a
STOP or PAUSE statement will be in octal form. F77 prints such a
number in decimal.

The FTN STOP statement has no effect on I/O units. The F77 STOP
statement closes any I/O units used by the program.

Unsupported FTN Constructs

The only frequently-used FTN construct not supported in F77 is the
TRACE statement, which was used in conjunction with the -TRACE compiler
option (also unsupported) as a debugging tool.

When assistance in debugging an F77 program is required, use the far
more powerful Source Level Debugger, available from Prime as a
separately priced item. For complete information on using the
debugger, see The Source Level Debugger Reference Guide.

Certain specialized and rarely-used FTN constructs are dependent on FTN
compiler options which are not supported by the F77 compiler. When one
of these constructs has been used in an FTN program unit being
converted to F77, it must be replaced with an equivalent F77 construct,
or eliminated entirely. The options are:

The -32R and -54R options: A few FTN constructs are available only in
R-mode: the commonly used ones are multi-level alternate returns, and
variable-length argument lists. Methods that provide the same results
and work in V and I mode can always be found.

The -SPO Option: The FTN constructs dependent on the -SPO option are
not enumerated here, as they are of interest only to certain
specialized users who need no additional information. If there is no
alternative to using an -SPO construct, be sure that the program unit
is otherwise callable from F77, and keep it in FTN form.

The -PBECB Option: Comments similar to those for the -SPO option
apply.

Obsolete FTN Constructs

The following features of FTN are not standard in FORTRAN 77. F77 has
been extended to accept them, but they are considered obsolete
techniques. Do not use them in new programs.

The obsolete techniques will always produce the same results in F77 as

A - 7 January 1980

APPENDIX A TDR4029

in FTN. They are mentioned here so that those converting FTN programs
to F77 will know that, despite their nonstandard status, they can be
ignored during the conversion process. They are not explained here,
because they are properly part of FTN, not F77. For information on
them, see The FORTRAN IV Reference Guide, FDR3057.

The obsolete features are:

• The format nOddd... for octal constants

• The ENCODE and DECODE statements for in-storage type conversion

• Hollerith strings

• Indexing a multi-dimensional array with a one-subscript
reference in an EQUIVALENCE statement

• Alternate returns using a GO TO to a statement-label dummy
variable

• Use of "$" instead of "*" to denote a statement label constant

• Extended DO-ranges, except when the F77 compiler is invoked with
the -D01 option for generation of FTN-type DO-loops. If an
extended DO-range is present in a program compiled with -N0D01
(the default) no error will be detected, but unpredictable
results will occur. See Section 7 for more on the -D01/-N0D01
option.

PRODUCING AN F77-STANDARD PROGRAM UNIT

An F77-standard unit is a converted FTN unit which contains no
optionally acceptable constructs. Such a unit must compile without
errors and give the expected results when compiled with the default
options -N0D01, -INTL, -LOGL, and -DYNM.

With respect to reimplemented, unsupported, and obsolete FTN
constructs, the task of producing an F77-standard program unit is
identical to that of producing an F77-compatible program unit.

Elimination of Optionally Acceptable Constructs

Elimination of an FTN program units's dependence on the synonymy of
INTEGER with INTEGER*2 and LOGICAL with L0GICAL*2 is easy. Where
INTEGER*2 or L0GICAL*2 data is specifically desired, modify or create
the appropriate type-statement. Where INTEGER*4 and L0GICAL*4 will do,
be sure that use of the longer data types will not cause mismatch of
arguments in subprogram invocations, or unexpected results in
mixed-type expressions and assignments.

REV. 0 A -

TDR4029 CONVERSION

Elimination of dependence on FIN-type handling of DO-loops is
accomplished as follows:

1. Eliminate any extended DO-ranges. The simplest way is to
substitute an appropriate subprogram invocation.

2. Where the program unit's logic is unalterably dependent on the
one-trip property of the FTN DO-loop (which is only rarely the
case) insert appropriate conditional statements into the source
code to insure that the trip will occur.

Existing conditional statements serving only to prevent the compulsory
one-trip if the DO-test is already satisfied when control reaches the
loop can be left in or deleted as desired: they merely duplicate the
normal action of an F77 DO-loop.

Elimination of a program unit's dependence on the -SAVE option is
accomplished by naming all data items which must be static in a SAVE
statement in the program unit. See the SAVE Statement in Section 3.

January 1980

IDR4029 EXAMPLE

APPENDIX B

F77 PROGRAMING EXAMPLE

Source File: EX.SRCE
Compiled on: 800116 at: 17:48 by: FORTRAN-77 Rev 17.2
Options: OPTIMIZE NOBIG INTL LOGL DYNM UPCASE

1 PROGRAM DEMO /* PROGRAM STATEMENT */
2 C
3 C
4 **
5 * *
6 * SAMPLE PROGRAM TO DEMONSTRATE THE VARIOUS FEATURES OF *
7 * FORTRAN 77, AND A TYPICAL F77 COMPILER SOURCE LISTING. *
8 * THIS PROGRAM IS NONSENSICAL, AND THE READER IS CAUTIONED *
9 * NOT TO TRY TO DECIPHER ITS LOGIC. *
10 * *
\1 **
12 C
13 C
14 c***** PARAMETER STATEMENTS
15 C
16 INTEGER ONE,FOUR,TEN,FORTY /* DCL TYPE BEFORE USE */
17 PARAMETER ONE = 1,
18 * FOUR = 4,
19 * TEN = 10,
20 * FORTY^TEN*FOUR /* NOTE USE OF EXPRESSION */
21 C
22 c***** THE CHARACTER DATA TYPE IS NEW TO FORTRAN 77.
23 C
24 CHARACTER*4 FILE
25 CHARACTER*12 FNAME, FORM*8
26 C
27 c***** ARRAY DCL'S, USING LOWER BOUNDS AND 7 DIMENSIONS
28 C
29 DIMENSION A(-5:5, 6, 0:9)
30 DIMENSION B(l, 2, 3, 4, 5, 6, 7)
31 CHARACTER C(0:FOUR, TEN)*5 /* CHAR ARRAYS ALLOWED */
32 /* NOTE USE OF PARAMETERS */
33 C
34 c***** LOGICAL VARIABLES - NOTE *1, *2 AND *4 FORMS.
35 C***** THESE ARE NOT FORTRAN 77, BUT ARE SUPPORTED FOR
36 c***** COMPATIBILITY WITH IBM. NOTE DATA INITIALIZATION
37 c***** IN A TYPE STATEMENT.
38 C
39 LOGICAL EXISTS, OPND
40 LOGTCAL*l LOG1
41 LOGICAL*2 LOG2/.TRUE./, LOG2B
42 LOGICALM LOGICALFOUR /* UP TO 32 CHAR NAMES */

B - 1 January 1980

APPENDIX B IDR4029

43 C
44 c***** C0MPLEX*16 IS NOT FORTRAN 77, BUT IS AN EXTENSION FOR
45 c***** COMPATIBILITY WITH IBM FORTRAN.
46 C
47 COMPLEX*]. 6 DCOMPVAR
48 C
49 c***** U S E 0p DOUBLE PRECISION TYPE DECLARATION
50 C
51 DOUBLE PRECISION Dl, D2, D3, D4
52 C
53 c***** EXTERNAL STATEMENT USED TO INSURE THAT AN EXTERNAL
54 c***** FUNCTION WILL BE USED INSTEAD OF THE INTRINSIC.
55 c***** I T COULD ALSO BE USED TO INSURE THAT ANY FUNCTION
56 C***** USED WILL NOT BE MISINTERPRETED AS AN INTRINSIC EVEN
57 c***** THOUGH SOME VENDOR MAY HAVE ADDED A FUNCTION OF THAT
58 C***** NAME TO THE LIST OF INTRINSICS, ENHANCING PORTABILITY.
59 C
60 EXTERNAL IFIX
61 C
62 c***** BEGINNING OF EXECUTABLE CODE. THE PURPOSE OF THIS
53 c***** ROUTINE IS TO OPEN SOME FILES, AND THEN CHECK
64 c***** T H A T T H E F I L E S ^ 2 ^ CORRECTLY OPENED. THIS DEMON-
65 C***** STRATES SOME OF THE NEW I/O FEATURES OF FORTRAN 77.
66 C
67 FILE = 'FILE' /* ASSIGN ASCII STRING TO CHAR VAR */
68 SOME_NUMBER =64.2
69 C
70 c***** T H I S I S T H E MAJN LoOP
71 C
72 DO 10 I=l,SQRT(SOME_NUMBER)*8 /* REAL EXPR FOR DO PARM
73 FNAME = FILE//CHAR(I) /* CHAR CONCATENATION */
74 C
75 c***** N E W OPEN STATEMENT WITH KEYWORDS.
76 C
77 OPEN (FILE = FNAME,
78 * UNIT = I,
79 * STATUS = 'UNKNOWN1,
80 * ACCESS = 'SEQUENTIAL1,
81 * ERR = 100)
82 C
83 C***** NEW INQUIRE STATEMENT
84 C
85 INQUIRE (UNIT = I,
86 * EXIST = EXISTS,
87 * OPENED = OPND,
88 * NAME = C(1+1,4) , /* EXPRESSION IN ARRAY REF */
89 * ERR = 101)

REV. 0

IDR4029 EXAMPLE

90 C
9 ! Q***** AN EXAMPLE OF A BLOCK IF-THEN-ELSE
92 C
93 IF (EXISTS .AND. OPND) THEN
94 WRITE (1,*) FNAME, ' EXISTS AND IS OPENED'
95 /* LIST DIRECTED I/O WITH */
96 /* CHAR CONSTANT */
97 ELSE
98 PRINT *, FNAME, * NOT OPENED, NO ERROR RAISED1

99 /* NEW PRINT STATEMENT */
100 END IF
101 10 CONTINUE
102 GO TO 1000
103 C
104 c***** END OF MAIN LOOP. ERROR ROUTINES FOLLOW.
105 C
106 100 WRITE (1, '(A, A, A, 13) TERROR ON OPEN OF ', FNAME,
107 * 'ON UNIT ', I
108 /* FORMAT EMBEDDED IN I/O STMT */
109 STOP 'ERROR'
110 101 CONTINUE
111 FORM = ' (A, 13)' /* DEFINE FORMAT */
112 WRITE (1, FORM) 'ERROR ON INQUIRE ON UNIT ',1
113 /* CHAR VAR REPRESENTS FORMAT */
114 STOP 'ERROR'
115 C
116 1000 INT_RANDOM = IFIX(3.1) /* USE EXTERNAL FUNCTION */
117 C
113 c***** THIS NEXT CALL DEMONSTRATES THE ALTERNATE RETURN.
119 C
120 CALL ALTRET (I, $5001, $5002)
121 INT_RANDOM = 0
122 GO TO 6000
123 5001 CONTINUE /* ALT RETURN H */
124 INT_RANDOM = 1
125 GO TO 6000
126 5002 CONTINUE /* ALT RETURN 12 */
127 INTJRANDOM = 2
128 C
129 c***** ANOTHER EXAMPLE OF THE BLOCK-IF, BUT WITH MULTIPLE
130 C***** BRANCHES. ALSO, MULTIPLE ENTRY POINTS OF THE
131 C***** SUBROUTINE MULTIN ARE USED.
132 C
133 6000 IF (INT_RANDOM .EQ. 0) THEN
134 CALL MULTIN (I, INT_RANDOM)
135 ELSE IF (INT_RANDOM .EQ. 1) THEN
136 CALL MULT1 (I)
137 ELSE IF (INTJRANDOM .EQ. 2) THEN
138 CALL MULT2 (INT_RANDOM)
139 ELSE
140 INT_RANDOM = -1
141 END IF

January 1980

APPENDIX B IDR4029

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

C
p*****

c*****
£*****
£*****
Q*****

c
(

]
•

]

c
Q*****

c*****
c*****
c

:

NEXT IS AN EXAMPLE OF INTERNAL FILES. FIRST, READ AN
80 CHAR RECORD INTO BUFFER. ASSUMING IT IS ALL
NUMBERS, IT CAN BE 'READ' INTERNALLY INTO ANOTHER
INTEGER VARIABLE. INTERNAL FILES HAVE THE SAME
FUNCTIONALITY AS ENCODE/DECODE.

/* DEFINE INPUT BUFFER
/* DEFINE INTEGER ARRAY

V
*/

CHARACTER BUFFER*30
DIMENSION IN_ARRAY(80)
READ (5, •(A80)') BUFFER
READ (UNIT=BUFFER, FMT='(8011)') IN_ARRAY

THIS IS AN EXAMPLE OF GENERIC TYPING OF INTRINSICS.
IT IS NO LONGER NECESSARY TO USE DIFFERENT FUNCTION
NAMES FOR THE SAME FUNCTION FOR DIFFERENT DATA TYPES.

/* DEFINE DOUBLE PREC VARS */ Dl
D2
D3
D4

2.2
3.6
4.9
Dl + D2 + D3

SINGLE = 31.3134 /* SINGLE PREC */
SINGLE=SQRT (Dl) /ABS (D2) +SQRT (D3)*SQRT (D4) /SQRT (D_SINGLE)
END

EXTERNAL ENTRY POINTS

Entry Point Program Unit

DEMO

Line

1

Type

ENTRY

Main Program DEMO on line 1

Name Storage Size Loc

10
100
101
1000
5001
5002
6000
ONE
FOUR
TEN
FORTY
FILE
FNAME
FORM
A
B

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC

2H
2H
2H
2H
4C
12C
8C
1320H
10080H

000120
000122
000130
000134
002604

Attributes

EXECUTABLE LABEL LINE 101
EXECUTABLE LABEL LINE 106
EXECUTABLE LABEL LINE 110
EXECUTABLE LABEL LINE 116
EXECUTABLE LABEL LINE 123
EXECUTABLE LABEL LINE 126
EXECUTABLE LABEL LINE 133
INTEGER*4 NAMED CONSTANT 1
INTEGER*4 NAMED CONSTANT 4
INTEGER*4 NAMED CONSTANT 10
INTEGER*4 NANIED CONSTANT 40
CHARACTER*4
CHARACTER*12
CHARACTER*8
REAL*4 DIMENSION(-5:5, 6, 0:9)
REAL*4 DIMENSION(1,2,3,4,5,6,7)

REV. 0 - 4

c
EXISTS
OPND
LOG1
LOG 2
LOG2B
LOGICALFOUR
DCOMPVAR
Dl
D2
D3
D4
I FIX
SOME NUMBER
I
SQRT
CHAR
INT_RANDOM
ALTRET
MULTIN
MULT1
MULT2
BUFFER
IN ARRAY
SINGLE
ABS
D SINGLE

DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
STATIC
DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
DYNAMIC
CONSTANT
DYNAMIC
DYNAMIC
INTRINSIC
INTRINSIC
DYNAMIC
CONSTANT
CONSTANT
CONSTANT
CONSTANT
DYNAMIC
DYNAMIC
DYNAMIC
INTRINSIC
DYNAMIC

250C
2H
2H
1C
1H
1H
2H
8H
4H
4H
4H
4H

2H
2H

2H

80C
2H
2H

2H

IDR4029

026344
000054
000056
026541
000027
000060
000062
026542
000064
000070
000074
000100

000104
000106

000110

026552
000112
000114

000116

CHARACTER*5 DIMENSION(0:
LOGICAL*4
LOGICAL*4
LOGICAL*l
INITIAL LOGICAL*2
LOGICAL*2
LOGICAL*4
COMPLEX*16
REAL*8
REAL*8
REAL*8
REAL*8
INTEGER*4 FUNCTION
REAL*4
INTEGER*4

INTEGER*4
SUBROUTINE
SUBROUTINE
SUBROUTINE
SUBROUTINE
CHARACTER*80
INTEGER*4 DIMENSION(30)
REAL*4

REAL*4

EXAMPLE

•A, 10)

January 1980

APPENDIX B IDR4029

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

C
C
**
*

*
*
*
*
*

*

THIS IS AN EXTERNAL FUNCTION OF THE SAME NAME AS THE *
INTRINSIC I FIX, AND DOES THE SAME THING, SO AS TO *
DEMONSTRATE THAT BY USING THE EXTERNAL STATEMENT ONE *
CAN SUBSTITUTE ONE'S OWN VERSION OF A FUNCTION. *

*
**

C
c

INTEGER FUNCTION IFIX(RVAR)
IFIX = RVAR
RETURN
END

EXTERNAL ENTRY POINTS

Entry Point Program Unit Line Type

IFIX 177 INTEGER*4 FUNCTION

Function IFIX on line 177

Name Storage Size Loc Attributes

RVAR DUMMY ARG 2H POS 1 REAL*4

REV. 0

IDR4029 EXAMPLE

181
182
133
184
185
136
187
188
189
190
191
192
193
194

* THIS SUBROUTINE DEMONSTRATES ALTERNATE RETURNS.
*

C

c
**
* *

*
*

**
c
c

SUBROUTINE ALTRET (I, *, *)
RETURN I /* IF I = 1, RETURNS TO 5001 */

/* IF I = 2, RETURNS TO 5002 */
/* OTHERWISE, RETURNS NORMALLY */

END

EXTERNAL ENTRY POINTS

Entry Point Program Unit

ALTRET

Line Type

190 SUBROUTINE

Subroutine ALTRET on line 190

Name Storage Size Loc Attributes

I DUMMY ARG 2H POS 1 INTEGER*4

January 1980

APPENDIX B IDR4029

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

C

c
**
* *
* THIS SUBROUTINE IS AN EXAMPLE OF A SUBROUTINE WITH *
* MULTIPLE ENTRY POINTS. *
* *
**
C

c

c

SUBROUTINE MULTTN (I, INT_RANDOM)

1 = 0
INT_RANDOM = 13
RETURN

c***** SECONDARY ENTRY POINT. NOTE THAT THE ARG LIST NEED

c***** N 0 T MATCH THAT AT THE HEADER STATEMENT.
C

ENTRY MULT1 (I)
I = 15
RETURN

C
c***** N E X T E N T R Y POINT
C

ENTRY MULT2 (INT_RANDOM)
INTJIANDOM = INT_RANDOM**2
RETURN
END

EXTERNAL ENTRY POINTS

Entry Point Program Unit

MULTIN
MULT1
MULT2

MULTIN
MULTIN

Line

205
214
220

Type

SUBROUTINE
SUBROUTINE
SUBROUTINE

Subroutine MULTIN on line 205

Name Storage Size

I DUMMY ARG 2H
INT RANDOM DUMMY ARG 2H

Loc Attributes

INTEGER*4 POS 1
-V- INTEGER*4

REV. 0 B - 8

IDR4029 MEMORY FORMATS

APPENDIX C

PRIME MEMORY FORMATS FOR F77 DATA TYPES

INTRODUCTION

Prime machines use a 16-bit memory word. All FORTRAN 77 data types
except CHARACTER occupy e i ther 32 b i t s or some multiple of 32 b i t s .
CHARACTER data occupies one byte per character .

F77 includes the INTEGER*2, L0GICAL*2, and L0GICAL*1 types for
compatibil i ty with FTN; these occupy 16, 16, and 8 b i t s respect ively .
These types should never be used in new programs.

Figure C-1 summarizes the s izes and internal bi t -usages of the F77 data
types. Detailed descr ip t ions of each type are presented below.

16

16

LOGICAL»2

32

LOGICAL*4

LOGICAL*1

16

16

16
_ i _

INTEGER*2

24

MANTISSA

16
_ l _

MANTISSA

16
_ l _

MANTISSA (REAL)

32

MANTISSA (REAL)

32

INTEGER»4

32

EXPONENT REAL (REAL*4)

32
_ l _

24 -r-
32

EXPONENT
(REAL)

48 64

EXPONENT

48

MANTISSA (IMAGINARY)

48 64

EXPONENT
(REAL)

96
_ 1 _

MANTISSA (IMAGINARY)

DOUBLE PRECISION
(REAL«8)

56 64

EXPONENT
(IMAGINARY) COMPLEX * 8

112

EXPONENT
[IMAGINARY)

124

COMPLEX » 16

CHARACTER

January 1980

APPENDIX C IDR4029

DATA TYPES

L0GICAL*4 32 bits. Bits 1-31=0 Bit 32: 0=.FALSE.
1=.TRUE.

L0GICAL*2 16 bits. Bits 1-15=0 Bit 16: 0=.FALSE.
1=.TRUE.

L0GICAL*1 8 bits. Bits 1-7=0 Bit 8: 0=.FALSE.
1=.TRUE.

INTEGER*2 16 bits. Bit 1 = sign bit. INTEGER numbers are in 2's
complement representation with a value range of -32768 to 32767. These
numbers in octal are '100000 and '077777 respectively. Note that -0=0,
and -(-32768) = -32768.

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

INTEGER*4 32 bits. Bit 1 = sign bit. Integer numbers are in 2's
complement representation with a value range of -2147483648 to
2147483647. These numbers, in octal (word 1, word 2) are ('100000,
'000000) and ('077777, '177777) respectively. Note that -0=0 and
-(-2147483643) = -2147483648.

Integer arithmetic is always exact. Integer division truncates, rather
than rounds.

Caution

Explicit use of DBLE (FLOAT (1*4)) can cause the loss of the
low-order 8 bits of precision. Mixed mode arithmetic, however,
will not lose precision.

REAL*4 32 bits. Bit 1 = sign bit. Bits 2-24 = mantissa. Bits 25-32 =
exponent. The mantissa and sign are treated as a 2's complement number
and the exponent is an unsigned, excess 128, binary exponent. In
general, any floating point number is represented as:

N = M * 2**(E-128)

where

-1< M < -1/2 or 1/2 < M < I
0 < E < 255

Zero is represented as M = 0, E = 0.

The value range, in octal (wordl, word2) is:

('100000, '000377) [See Note] to ('077777, '177777)

corresponding to -1*2** (127) and (l-e)*2**(127).

REV. 0 C -

IDR4029 'MEMORY FORMATS

The values closest to zero, in octal are:

('137777, '177400) and ('040000, '000000) [See Note]

corresponding to (-1/2+e)*2**-123 and l/2*2**-128

Normalization ensures that bits 1 and 2 are different and is achieved
by shifting left 1 bit at a time. Hence, the effective precision is
between 22 and 23 bits.

Note

These numbers will cause exponent overflow if negated due to
the asymmetry of 2's complement notation.

DOUBLE PRECISION 64 bits. Bit 1 = sign bit. Bits 2-48 = mantissa.
Bits 49-64 = exponent. The mantissa and sign are treated as a 2's
complement number and the exponent is a signed, excess 128, binary
exponent. In general, any double precision floating point number is
represented as:

N = M * 2 (E-128)

where

-1 < M <-l/2 or 1/2 < M < 1
-32768 < E < 32767.

Zero is represented as M = 0, E = 0

The value range, in octal (wordl, word2, word3, word4) is:

('100000, '000000, '000000. '077777) [See Note] to
('077777, '177777, '177777, '077777)

corresponding to -1*2**32639 and (l-e)*2 32639

The values closest to zero, in octal, are:

('137777, '177777, '177777, '100000) and
('040000, '000000, '000000, '100000) [See Note]

corresponding to (-1/2+e)*2**-32895 and l/2*2**-32896

Normalization ensures that bits 1 and 2 are different and is achieved
by shifting left 1 bit at a time. Hence, the effective precision is
between 46 and 47 bits.

January 1980

APPENDIX C IDR4029

Note

These numbers will cause exponent overflows if negated due to
the asymmetry of 2's complement notation.

COMPLEX 64 bits. A complex number is defined as two REAL*4 entities
(see above) representing the real and imaginary parts.

COMPLEX*!6 128 bits. Same as COMPLEX, except that two DOUBLE PRECISION
entities are used.

CHARACTERS Prime uses ASCII as its standard internal and external
character code. It is the 8-bit, marking variety (parity bit always
on). Thus, Prime's code set is effectively a 128-character code set.
(ASCII spacing representation, parity bit always off, can be entered
into the system, but most system software will fail to recognize the
characters as their terminal printing equivalent.)

Each character occupies one byte. The length of a CHARACTER item may
be up to 32767 characters.

REV. 0 C -

IDR4029 ASCII CHARACTER SET

APPENDIX D

ASCII CHARACTER SET

The standard character set used by Prime is the ANSI, ASCII 7-bit set.

PRIME USAGE

Prime hardware and software uses standard ASCII for communications with
devices. The following points are particularly important to Prime
usage.

• Output Parity is normally transmitted as a zero (space) unless
the device requires otherwise, in which case software will
compute transmitted parity. Some controllers (e.g., MLC) may
have hardware to assist in parity generations.

• Input Parity is ignored by hardware and by standard software.
Input drivers are responsible for making the parity bit suit the
host software requirements. Some controllers (e.g., MLC) may
assist in parity error detection.

• The Prime internal standard for the parity bit is one, i.e., '200
is added to the octal value.

KEYBOARD INPUT

Non-printing characters may be entered into text with the logical
escape character ~ and the octal value. The character is interpreted
by output devices according to their hardware.

Example: Typing ~207 will enter one character into the text.

is interpreted as a .BREAK.
is interpreted as a newline (.NL.)
is interpreted as a character erase
is interpreted as line kill
is interpreted as a logical tab (Editor)

CTRL-
.CR.
H

?
\

-P (
('
(
('
(

•220)
•215)
'242)
'277)
•334)

January 1980

APPENDIX D IDR4029

Table D-l

ASCII Character Set (Non-Printing)

Octal
Value

200
201
202
203
204
205
206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237

ASCII
Char

NULL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

Control
Comments/Prime Usage Char

Null character - filler ~@
Start of header (communications) "A
Start of text (communications) ~B
End of text communications ~C
End of transmission (communications) ~D
End of I.D. (communications) ~E
Acknowledge affirmative (communications) ~F
Audible alarm (bell) ~G
Back space one position (carriage control) "H
Physical horizontal tab "I
Line feed; ignored as terminal input "J
Physical vertical tab (carriage control) ~K
Form feed (carriage control) ~L
Carriage return (carriage control) (1) ~M
RRS-red ribbon shift ~N
BRS-black ribbon shift "0
RCP-relative copy (2) "P
RHT-relative horizontal tab (3) ~Q
HLF-half line feed forward (carriage control) "R
RVT-relative vertical tab (4) ~S
HLR-half line feed reverse (carriage control) ~T
Negative acknowledgement (communications) ~U
Synchronocity (communications) ~V
End of transmission block (communications) "W
Cancel "X
End of Medium ~Y
Substitute ~Z
Escape * [
File separator ~\
Group separator ~]
Record separator
Unit separator ~_

REV. 0 D

IDR4029 ASCII CHARACTER SET

Notes for Table D-l

1. Interpreted as .NL. at the terminal.

2. .BREAK, at terminal. Relative copy in file; next byte specifies
number of bytes to copy from corresponding position of preceding
line.

3. Next byte specifies number of spaces to insert.

4. Next byte specifies number of lines to insert.

Conforms to ANSI X3.4-1968

The parity bit ('200) has been added for Prime-usage.

Non-printing characters (~c) can be entered at most terminals by typing
the (control) key and the c character key simultaneously.

D - 3 January 1980

APPENDIX D IDR4029

Table D-2

ASCII Character Set (Printing)

Octal ASCII OCTAL ASCII OCTAL ASCII
Value Character Value CHaracter Value Character

240
241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277

.SP (1)
i
H

fr
$
%
&
i

(
)
*

+
r
-
.

/
0
1
2
3
4
5
6
7
8
9
:

r

<

=
>

?

(2)
(3)

(4)

(5)

(6)

300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
333
334
335
336
337

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
w
X
Y
Z
[
\

]
~ (7)
(8)

340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376
377

% (9)
a
b
c
d
e
f
g
h
i
J
k
1
m
n
0

P
q
r
s
t
u
V

w
X

y
z
{
1
}
- (10)
DEL (11)

REV. 0 D

IDR4029 ASCII CHARACTER SET

Notes for Table D-2

1. Space forward one position

2. Terminal usage - erase previous character

3. 1 in British use

4. Apostrophe/single quote

5. Comma

6. Terminal usage - kill line

7. 1963 standard T; terminal use - logical escape

8. 1963 standard <

9. Grave

10. 1963 standard ESC

11. Rubout - ignored

Conforms to ANSI X3.4-1963
1963 variances are noted

The parity bit ('200) has been added for Prime usage,

January 1980

INDEX

$INSERT statement 3-14

321 compiler option 7-10

64V compiler option 7-10

A descriptor 4-28

Abbreviations for compiler
options 7-12

ABS intrinsic function 6-4

Access:
Direct 4-3
Of a file 4-6
Sequential 4-3

ACCESS= (I/O option)
4-13

4-10,

6-6 ACOS intrinsic function

Actual argument 2-1

Address constant 2-9, 5-3

Addressing mode 7-10

Adjustable subprogram elements:
Character functions 5-7
Character arguments 5-7
Assumed-size arrays 5-7
Array dimensions 5-7

AIMAG intrinsic function 6-5

AINT intrinsic function 6-4

ALOG intrinsic function 6-6

ALOG10 intrinsic function 6-6

Altering maximum record length
4-4

Alternate returns 5-3, 5-6

AMAX0 intrinsic function 6-5

AMAX1 intrinsic function 6-5

AMIN0 intrinsic function 6-5

AMIN1 intrinsic function 6-5

AMOD intrinsic function 6-4

AND intrinsic function 6-7

AND truth table 2-12

ANINT intrinsic function 6-4

Arguments:
Actual 2-1
Adjustable 5-7
Arrays as 5-8
Dummy 2-1
Subprograms as 5-9
To functions 5-4
To intrinsic functions 6-2
To PRIMOS subroutines 5-2
To secondary entry points 5-6
To statement functions 5-5
To subprograms 2-5
To subroutines 5-1, 5-3

Arithmetic assignment 3-14

Arithmetic expression 2-1

Arithmetic-IF statement 3-20

Arithmetic:
Conversion 2-14
Mixed type 2-14
Operators 2-13

Array and variable names 2-10

Arrays:
Adjustable dimensions for
And COMMON blocks 3-10
And format lists
As arguments 5-8
Assumed size 5-7
COMMON blocks in
Declaring 2-10,
Equivalencing 3-10
In COMMON blocks 5-8
In input lists 4-19
In output lists 4-20
Names for 2-10
Referencing 2-11, 8-1

5-7

4-18

2-11
3-6

X -

INDEX

Larger than segment 5-8, 7-9

ASCII character set D-l

ASIN intrinsic function 6-6

ASSIGN statement 3-19

Assigned GO TO statement 3-19

Assigning a device 4-5

Assignment of character data
2-8

Assignment statements 3-14

Assignment, type conversion at
3-15

Asterisks in output field 4-21

ATAN intrinsic function 6-6

ATAN2 intrinsic function 6-6

Augmented code options, compiler
7-11

B descriptor 4-29

BACKSPACE statement 4-16

BIG 5-9

BIG compiler option 7-9

BINARY compiler option 7-8

Blank control editing 4-33

BLANK= (I/O option) 4-11,
4-15

Blanks in format lists A-6

Blanks, significance of 2-2

BLOCK DATA statement 3-3

Block-IF statement 3-20

BN descriptor 4-33

Boundary-spanning code 5-8

Braces 1-10

Brackets 1-10

Business editing 4-29

BZ descriptor 4-33

CABS intrinsic function 6-4

CALL EXIT 3-22

CALL statement 3-12

Carriage control 4-2-1

Case conversion 2-2, 7-5

CCOS intrinsic function 6-6

CDABS intrinsic function 6-4

CDCOS intrinsic function 6-6

CDEXP intrinsic function 6-6

CDLOG intrinsic function 6-6

CDSIN intrinsic function 6-6

CDSQRT intrinsic function 6-5

CEXP intrinsic function 6-6

Changing maximum record length
4-4

CHAR intrinsic function 6-4

Character constant editing 4-28

Character descriptor 4-28

Character data:
Adjustable 5-7
Assignment 2-8
Comparison 2-8
Concatenation 2-8
Declaration 2-7
Defined 2-7

X -

INDEX

In output lists 4-20
Initializing 2-8
Input/Output 2-8
Intrinsic functions for 2-8
Padding 2-8
Quotes within 2-7
Strings 2-7
Substrings 2-8
Truncation 2-3

Character editing 4-28

Character expression 2-1

Character function, adjustable
5-7

Character operator 2-13

Character set, ASCII D-l

Character set, F77 2-2

Character strings 2-7

Circular reasoning, see proof by
assumption

CLOG intrinsic function 6-6

CLOSE statement 4-12

CMPLX intrinsic function 6-3

COBOL, Interface to 1-6

Coercion at assignment 3-15

Collating sequence 2-2

Colon descriptor 4-34

Comment line format 2-3

COMMON blocks:
And arrays 3-10, 5-8
F$IOBF 4-4
F$IOSZ 4-4
In arrays 2-11
Initialization of 3-4
Lengths of 3-9
Loading order 3-9
Over one segment long 3-10,
5-8

Restrictions on 3-9
Restrictions on arrays in 5-8
Rules for 3-9
Storage class of 3-12

COMMON statement 3-9

Comparison of character data
2-8

Compatibility with FTN A-2

Compiler control statements
3-13

Compiler options:
321 7-10
64V 7-10
BIG 7-9
BINARY 7-8
DCLVAR 7-7
DEBUG 7-11
D01 7-11
DYNM 7-9, 8-5
ERRLIST 7-7
ERRTTY 7-7
EXPLIST 7-6
INPUT 7-5
INTL 7-10
INTS 7-10
LCASE 7-5
LISTING 7-6
LOGL 7-10
LOGS 7-10
NO(compiler_option__name) , see

the compiler option name
OFFSET 7-6
OPTIMIZE 7-11
PBECB A-7
PRODUCTION 7-12
RANGE 7-12
SAVE 7-9
SILENT 7-7
SOURCE 7-5
SPO A-7
STATISTICS 7-8
UPCASE 7-5
XREF 7-6

Compiler:
End-of-compilation message
7-2

Error messages 7-1
Invoking 7-1

X -

INDEX

Option abbreviations 7-12
Options 7-3

COMPLEX data 2-6

Complex editing 4-26

COMPLEX*16 data 2-7

Composition of programs 2-15

Computed GO TO statement 3-19

Concatenation 2-8

Concordance 7-6

Condition handler 1-9

Conditional output 4-34

CONJG intrinsic function 6-5

Connecting a file 4-9

Constants 2-9

Continuation line format 2-3

CONTINUE statement 3-19

Control statements 3-15

Conventions 1-9

Conversion of data types, see
type conversion

Conversion of programs A-l

Conversion of type at assignment
3-15

COS intrinsic function 6-6

COSH intrinsic function 6-7

Creating a file 4-9

Cross reference 7-6

CSIN intrinsic function 6-6

CSQRT intrinsic function 6-5

D descriptor 4-26

DP35 intrinsic function 6-4

DACOS intrinsic function 6-6

DAM file 4-3

DASIN intrinsic function 6-6

Data definition statements 3-4

Data formats C-l

Data initialization statement
3-7

Data initialization, see
initialization 3-6

DATA statement 3-7

Data storage formats C-l

Data transfer statements 4-17

Data transfer:
Formatted 4-18
Unformatted 4-18

Data types:
CHARACTER 2-7
COMPLEX 2-6
C0MPLEX*16 2-7
DOUBLE PRECISION 2-6
Hollerith constants 2-7
Hollerith constant 2-9
INTEGER 2-5
INTEGER*2 2-5
INTEGER*4 2-5
LOGICAL 2-7
Precisions of
Ranges of 2-4
REAL 2-6
Statement label 2-9
Storage formats for C-l
Storage lengths for 2-4
Summary of 2-4
Synonymous 3-5, 3-6
Synonymous names for 2-4

X -

INDEX

Database Management System 1-7

DATAN intrinsic function 6-6

DATAN2 intrinsic function 6-6

DBG 1-8

DBLE intrinsic function 6-3

DBMS 1-7

DCLVAR compiler option 7-7

DCMPLX intrinsic function 6-4

DCONJG intrinsic function 6-5

DCOS intrinsic function 6-6

DCOSH intrinsic function 6-7

DDIM intrinsic function 6-4

DEBUG compiler option 7-11

Debugger 1-8

Declaration of data elements
3-5

DECODE statement 4-4

Defaults:
In data type declaration 3-4
Integer data storage length
2-5

Logical data storage length
2-7

Storage class 3-8

Definitions 1-1, 2-1

Degugger 7-11

Deleting a file 4-12, 4-9

Delimiters for list-directed I/O
4-22

Descriptors:
A 4-28
B 4-29
BN 4-33

BZ 4-33
Colon 4-34
D 4-26
E 4-25
Edit-control 4-23
F 4-25
Field 4-23
G 4-26
I 4-25
L 4-28
Non-numeric 4-28
Numeric 4-24
P 4-31
Repeating 4-23
S 4-33
Slash (/) 4-34
SP 4-33
SS 4-33
T 4-33
TL 4-33
TR 4-33
X 4-29

Determining data storage class
3-8

Determining file attributes
4-12

Device control statements 4-16

DEXP intrinsic function 6-6

DIM intrinsic function 6-4

DIMAG intrinsic function 6-5

DIMENSION statement 3-6

DINT intrinsic function 6-4

Direct access 4-3

DIRECT= (I/O option) 4-14

DLOG intrinsic function 6-6

DLOG10 intrinsic function 6-6

DMAX1 intrinsic function 6-5

DMIN1 intrinsic function 6-5

X -

INDEX

DMOD intrinsic function 6-4

DNINT intrinsic function 6-4

DO statement 3-15

DO-loop:
Execution 3-15
In FTN and F77 3-18, A-4
One-trip 3-18, 7-11, A-4
Syntax 3-15

D01 compiler option 7-11

DOUBLE PRECISION data 2-6

Double precision editing 4-26

DPROD intrinsic function 6-5

DREAL intrinsic function 6-3,
6-5

DSIGN intrinsic function 6-4

DSIN intrinsic function 6-6

DSINH intrinsic function 6-7

DSQRT intrinsic function 6-5

DTAN intrinsic function 6-6

DTANH intrinsic function 6-7

Dummy argument 2-1

Dynamic storage 3-11, 3-8,
7-9, A-4

DYNM 8-5

DYNM compiler option 7-9

E descriptor 4-25

Edit-control descriptors, see
Descriptors

Editing files 4-4

Ellipsis 1-10

ENCODE statement 4-4

END statement 3-22

End-of-compilation message 7-2

END= (I/O option) 4-18

Endfile record 4-2

ENDFILE statement 4-16

Ending a program unit 3-21

Entry points, Secondary 5-6

ENTRY statement 3-3

EQUIVALENCE statement 3-10

EQV truth table 2-12

ERR= (I/O option) 4-11, 4-12,
4-13, 4-18

ERRLIST compiler option 7-7

Error file options, compiler
7-7

Errors:
During compilation 7-1
During I/O 4-22
Handling 1-9
Runtime, see The Prime Users
Guide

ERRTTY compiler option 7-7

Evaluation order 2-14

Example of F77 B-l

Exceptions 1-9

EXIST= (I/O option) 4-13

EXIT subroutine 3-22

EXP intrinsic function 6-6

Expanded listing 7-6

X -

INDEX

EXPLIST compiler option 7-6

'Expression evaluation order
2-14

Expression:
Arithmetic 2-1
Character 2-1
Fixed-length 2-1
Integer 2-1
Integer constant 2-2

Expressions:
In output lists 4-20

Extensions:
"$" in output exponents 4-26
"$" in statement label
constants 2-9

"=" in output exponents 4-26
B descriptor (Business editing)
4-29

Backarrow character 2-2
Coercion of C0MPLEX*8 type
2-14

Compiler control statements
3-13

Data types 2-4
Initializing blank COMMON 3-4
Lowercase in source 2-2
Octal integers 2-5
Overlapping character
assignments 2-8

Padding of DAM records 4-20
RECL for SAM files 4-2
Some intrinsic functions 6-14
Summary of major 1-5
Synonymous names 2-4
Underscore character 2-2

EXTERNAL statement 3-12

F descriptor 4-25

F$IOBF 4-17, 4-4

F$IOSZ 4-4

F77 1-1

Field descriptors, see
Descriptors

File control statements 4-9

File unit numbers 4-7

File units 4-6

File units, table of 4-7

File:
Accessing a 4-6, A-6
And file unit 4-6
Connecting a 4-9
Creating a 4-9
DAM 4-3
Defined 4-1
Deleting a 4-12, 4-9
Determining attributes of
4-12

Direct access of 4-3
Editing a 4-4
Establishing attributes of
4-9

File/program interaction 4-5
Implementation of 4-2
Internal 4-3
Minimizing space for 4-2
Opening a 4-6, 4-9
Pointer defined 4-1
Preconnected 4-6
SAM 4-3
Sequential access of 4-3
Terminal as a 4-1

FILE= (I/O option) 4-10, 4-13

Fixed length records 4-2

Fixed-length character expression
2-1

Flag undeclared variables 7-7

FLOAT intrinsic function 6-3

FMT= (I/O option) 4-19

FORM= (I/O option) 4-10, 4-14

Format descriptors, see
Descriptors

Format list:
Defined 4-18
Literals in 4-28

X -

INDEX

Repeating 4-24
Space-skipping in 4-29
Variable 4-18

FORMAT statement 4-23

Formatted data transfer 4-18

Formatted records 4-1

FORMATTED= (I/O option) 4-14

FORMS 1-8

Forms Management System 1-8

FORTRAN 1-1

FORTRAN 66 1-1

FORTRAN 77 1-1

FORTRAN IV 1-1

FTN 1-1

FTN:
Converting to A-l
F77 compatibility with A-2
Interface to 1-6, A-2

FULL LIST statement 3-13

FUNCTION statement 3-3

Functions and subroutines 5-1

Functions:
Adjustable character 5-7
As arguments 5-9, 6-1
Eliminating redundant calls to
8-2
Execution of 5-4
Generic 6-1
Intrinsic 5-5, 6-1, A-6
Recursion in 5-4
Referencing 5-4
Result-type of intrinsic 6-2
Rules for 5-5
Specific 6-1
Statement 5-5
Table of intrinsic 6-3
Typing of 5-4
User-supplied 5-5

G descriptor 4-26

Global mode A-5

GO TO:
Assigned 3-19
Computed 3-19
Unconditional 3-19

Header statements 3-2

Headers, secondary 5-6

Hollerith constants 2-7, 2-9

I descriptor 4-25

I-mode 7-10

I/O errors 4-22

IABS intrinsic function 6-4

ICHAR intrinsic function 6-4

IDIM intrinsic function 6-4

IDINT intrinsic function 6-3

IDNINT intrinsic function 6-4

IF:
Arithmetic 3-20
Block 3-20
Logical 3-20

IFIX intrinsic function 6-3

IFTNLB 4-4

Implementation of files 4-2

IMPLICIT statement 3-4

Implied-DO:
In DATA statement 3-7
In input list 4-19
In output list 4-20

Increasing maximum record length
4-4

X -

INDEX

INDEX intrinsic function 6-5 Internal files 4-3

Initialization: INTL compiler option 7-10
Causes data to be static 3-8
In block data subprogram 3-3
In DATA statement 3-7
In type-statement 3-6
Of blank COMMON 3-4
Of character data 2-8, 3-7

INPUT compiler option 7-5

Input list:
And implied-DO 4-19
Arrays in 4-19
Defined 4-19

Input/Output 4-1

INQUIRE statement 4-12

INQUIRE statement options 4-13

Insert line format 2-3

INSERT statement 3-14

INT intrinsic function 6-3

Integer constant expression 2-2

INTEGER data 2-5

Integer editing 4-25

Integer expression 2-1

INTEGER*2 data 2-5

INTEGER*4 data 2-5

Interface:
To COBOL 1-6
To DBMS 1-7
To FORMS 1-8
To FTN 1-6, A-2
To MIDAS 1-7
To PASCAL 1-6
To PL/I 1-6
To PMA 1-6

Interfaces to other languages
1-6

INTL intrinsic funct

Intrinsic functions:
ABS
ACQS
AIMAG
AINT
ALOG
ALOG10
AMAX0
AMAX1
AMIN0
AMIN1
AMOD

.WD
ANINT
ASIN
ATAN
AT AN 2
CABS
CCOS
CDABS
CDCOS
CDEXP
CDLOG
CDSIN
CDSQRT
CEXP
CHAR
CLOG
CMPLX
CONJG
COS
COSH
CSIN
CSQRT
DABS
DACOS
DASIN
DATAN
DATAN2
DBLE
DCMPLX
DCONJG
DCOS
DCOSH
DDIM
DEXP
DIM I
DIMAG

6-4
6-6
6-5
6-4
6-6
6-6
6-5
6-5
6-5
6-5
6-4
6-7
6-4
6-5
6-6
6-6
6-4
6-6
6-4
6-6
6-6
6-6
6-6
6-5

6-6
6-4
6-6
6-3
6-5

6-6
6-7
6-6
6-5
6-4
6-6
6-6
6-6
6-6

6-3
6-4
6-5

6-6
6-7
6-4
6-6
5-4
6-5

X -

INDEX

DINT
DLOG

6-4
6-6

DLOG10 6-6
DiMAXl
DMIN1
DMOD
DNINT
DPROD
DREAL
DSIGN
DSIN
DSINH
DSQRT
DTAN
DTANH
EXP
FLOAT
IABS
ICHAR
IDIM
IDTNT

6-5
6-5
6-4
6-4
6-5
6-3,
6-4
6-6
6-7
6-5
6-6
6-7

6-6
5-3
6-4
6-4
6-4
6-3

IDNINT 6-4
IFIX
INDEX
INT
INTL
INTS
ISIGN
LEN
LGE
LGT
LLE
LLT
LOG
LOG
LOG10

6-3
6-5

6-3
6-3
6-3
6-4

6-5
6-7
6-7
6-7
6-7
6-8
6-6
6-6

LS 6-7
LT 6-8
MAX
MAX0
MAX1
MIN
MIN0
MINI
MOD
NINT
NOT

6-5
6-5
6-5
6-5
6-5
6-5
6-4
6-4
6-7

OR 6-7
REAL 6-3,
RS 6-7
RT 6-8
SHFT
SIGN
SIN

6-7
6-4
6-6

6-5

6-5

SINH 6-7
SNGL 6-3
SORT 6-5
TAN 6-6
TANH 6-7
XOR 6-7

INTRINSIC statement 3-12

Introduction 1-1

INTS compiler option 7-10

INTS intrinsic function 6-3

IOCS 4-4

IOSTAT= (I/O option) 4-11,
4-12, 4-13, 4-19

ISIGN intrinsic function 6-4

L descriptor 4-28

Language elements 2-1

LCASE compiler option 7-5

Legal characters 2-2

LEN intrinsic function 6-5

Length mismatch on output 4-20

LGE intrinsic function 6-7

LGT intrinsic function 6-7

Line formats 2-3

Line numbers 2-9

Line-skipping 4-21

Linking, see loading

LIST statement 3-13

List-directed I/O:
And COMPLEX data 2-6
Defined 4-21
Delimiters 4-22
Repeat counts 4-22

X - 10

INDEX

LISTING compiler option 7-6

Listing control A-5

Listing options, compiler 7-5

LLE intrinsic function 6-7

LLT intrinsic function 6-7

Loading COMMON blocks 3-9

Loading F77 programs, see The
Prime User's Guide

LOC intrinsic function 6-8

LOG intrinsic function 6-6

LOG10 intrinsic function 6-6

Logical assignment 3-14

LOGICAL data 2-7

Logical editing 4-28

Logical operators 2-12

Logical-IF statement 3-20

LOGL compiler option 7-10

LOGS compiler option 7-10

Long and short integers 2-5,
6-2, 7-10, A-4

Long and short logicals 2-7,
7-10, A-4

Loss of precision 2-14, 3-17

Lower-to-upper case 2-2, 7-5

Lowercase convention 1-10

LS intrinsic function 6-7

LT intrinsic function 6-8

Mapping lower to upper case
2-2, 7-5

MAX intrinsic function 6-5

MAX0 intrinsic function 6-5

MAX1 intrinsic function 6-5

Maximum record length 4-4

Memory formats C-l

MIDAS 1-7

MIN intrinsic function 6-5

MIN0 intrinsic function 6-5

MINI intrinsic function 6-5

Mixed-type assignment 3-15

Mixing data types 2-14, 3-15,
6-2

MOD intrinsic function 6-4

Multiple Index Data Access System
1-7

NAME= (I/O option) 4-13

Named constants, see parameters
2-10

NAMED= (I/O option) 4-13

Names:
For program units 2-15
For variables and arrays 2-10
Of secondary entry points 5-6

NEQV truth table 2-13

NEXTREC= (I/O option) 4-15

NINT intrinsic function 6-4

NO LIST statement 3-13

NO(compiler_option_name), see the
compiler option name

NOBIG 5-9

X - 11

INDEX

Non-numeric descriptors 4-28

NOT intrinsic function 6-7

NOT truth table 2-12

NPFTNLB 4-4

NUMBER= (I/O option) 4-13

Numeric descriptors 4-24

Object file options, compiler
7-8

Obsolete FTN constructs A-7

Octal integers 2-5

OFFSET compiler option 7-6

Offset map 7-6

On-unit 1-9

OPEN statement 4-9

OPEN statement options 4-10

OPENED= (I/O option) 4-13

Opening a file 4-6, 4-9

Operands:
Arrays 2-10
Constants 2-9
Parameters 2-10
Variables 2-10

Operators:
Arithmetic 2-13
Character 2-13
Logical 2-12
Priority of 2-13
Relational 2-13

OPTIMIZE compiler option 7-11

Optimizing:
Array references 8-1
Function references 8-2
I/O 8-3
Integer division 8-5
Library calls 8-4

Memory allocation 8-1
Object code 7-11
Programs 8-1
Statement sequence 8-3
Subprogram calls 8-4
With DYNM option 8-5
With parameters 8-4

Optionally acceptable FTN
constructs A-3

Options:
BACKSPACE statement 4-16
CLOSE statement 4-12
Compiler 7-3
ENDFILE statement 4-16
INQUIRE statement 4-13
OPEN statement 4-10
READ statement 4-18
REWIND statement 4-16
WRITE statement 4-20

OR intrinsic function 6-7

OR truth table 2-12

Order of expression evaluation
2-14

Ordinary code 5-8

Other languages, F77 Interface to
1-6

Out-of-bounds values 7-12

Output list:
And implied-DO 4-20
Arrays in 4-20
Defined 4-20
Expressions in 4-20
Length mismatch 4-20

Overriding data-type defaults
3-4

P descriptor 4-31

Page skipping 4-21

PARAMETER statement 3-7, 8-4

X - 12

INDEX

Parameters 2-10

Parentheses 1-10

Parentheses, extra in I/O
statements A-6

PASCAL, Interface to 1-6

PAUSE statement 3-21, A-7

PBECB A-7

Petitio principii, see circular
reasoning

Physical device numbers 4-7

Physical devices, table of 4-7

PL/I, Interface to 1-6

PMA, Interface to 1-6

Positional editing 4-33

Precision of data types 2-4

Precision, loss of 2-14, 3-17

Preconnection 4-6

PRIMOS device numbers 4-7

PRIMOS subroutines 5-2

PRINT statement 4-21

Priority of operators 2-13

Procedure statements 3-12

PRODUCTION compiler option 7-12

Program composition 2-15

Program composition, table 2-16

Program conversion A-l

Program execution, see The Prime
User's Guide

PROGRAM statement 3-3

Program unit 2-2

Proof by assumption, see petitio
principii

Quotes in character data 2-7

R-mode 7-10

RANGE compiler option 7-12

Ranges of data types 2-4

READ statement 4-18

REAL data 2-6

Real editing 4-25

REAL intrinsic function 6-3,
6-5

REAL*4, see REAL

REAL*8, see DOUBLE PRECISION

REC= (I/O option) 4-18

RECL= (I/O option) 4-10, 4-15

Record:
Defined 4-1
Endfile 4-2
Fixed length 4-2
Formatted 4-1
Increasing maximum length 4-4
Length mismatch on output
4-20

Skipping during data transfer
4-34

Types of 4-1
Unformatted 4-2
Varying length 4-2

Recovering from PAUSE 3-21

Recursion:
In functions 5-4
In subroutines 5-4

X - 13

INDEX

Referencing:
Arrays 2-11, 8-1
Avoiding redundant 8-2
Functions 5-4
Program units in other
languages 1-6

Secondary entry points 5-6
Statement functions 5-5
Subroutines 5-1

Reimplemented FTN constructs
A-5

Relational operators 2-13

Repeat counts 4-22

Restarting program execution
3-21

Restrictions:
Block-IF with DO-loop 3-21
DO-loop with block-IF 3-21
Function references in
expressions 2-15

In subscript expressions 2-11
On adjustable arrays 5-8
On amount of dynamic data 3-8
On amount of static data 3-8
On arrays as arguments 5-8
On arrays in COMMON blocks
5-8

On BACKSPACE statement 4-16
On character array arguments

5-9
On COMMON blocks 3-9, 3-10
On DAM f i l e modification 4-3
On data storage 3-8
On equivalencing 3-10
On extended DO-range 3-18
On fixed-length f i l e
modification 4-4

On function side-effects 5-4
On functions causing data
transfer 4-17

On program unit size 2-15,
3-8

On values returned to
expressions 5-1

RETURN statement 3-21

Returns, alternate 5-3

REWIND statement 4-16

RS intrinsic function 6-7

RT intrinsic function 6-8

Running F77 programs, see The
Prime User's Guide

S descriptor 4-33

S-mode 7-10

SAM file 4-3

SAVE compiler option 7-9

SAVE statement 3-11, A-4

Scale factors 4-31

Secondary entry points 5-6

Secondary headers 5-6

Segment 2-2

Sequential access 4-3

SEQUENTIAL^ (I/O option) 4-14

SHFT intrinsic function 6-7

Short and long integers 2-5 ,
6-2, 7-10, A-4

Short and long logicals 2-7,
7-10, A-4

Sign control editing 4-33

SIGN intrinsic function 6-4

SILENT compiler option 7-7

SIN intrinsic function 6-6

SINH intrinsic function 6-7

Skipping lines 4-21

X - 14

INDEX

Skipping pages 4-21

Skipping records 4-34

Slash (/) descriptor 4-34,
A-6

SNGL intrinsic function 6-3

SOURCE compiler option 7-5

Source file options, compiler
7-5

Source level debugger 1-8,
7-11

Source listing 7-6

Source listing options, compiler
7-5

SP descriptor 4-33

SPO A-7

SQRT intrinsic function 5-5

SS descriptor 4-33

Statement categories:
Assignment 3-14
Compiler control 3-13
Control 3-15
Data definition 3-4
Data initialization 3-7
Data transfer 4-17
Device control 4-16
File control 4-9
Format 4-23
Header 3-2
Procedure 3-12
Storage allocation 3-8
Type-statements 3-5

Statement functions 3-13,
5-5, 8-4

Statement label constant 2-9

Statement labels 2-9

Statement line format 2-3

Statement number 2-9

Statements:
$INSERT 3-14
Arithmetic-IF 3-20
ASSIGN 3-19
Assigned GO TO 3-19
Assignment 3-14
BACKSPACE 4-16
BLOCK DATA 3-3
Block-IF 3-20
CALL 3-12, 5-1
CLOSE 4-12
COMMON 3-9
Computed GO TO 3-19
CONTINUE 3-19
DATA 3-7
DECODE 4-4
DIMENSION 3-6
DO 3-15
ENCODE 4-4
END 3-22
ENDFILE 4-16
ENTRY 3-3
EQUIVALENCE 3-10
EXTERNAL 3-12
FORMAT 4-23
FULL LIST 3-13
FUNCTION 3-3
IMPLICIT 3-4
INQUIRE 4-12
INSERT 3-14
INTRINSIC 3-12
LIST 3-13
Logical-IF 3-20
NO LIST 3-13
OPEN 4-9
PARAMETER 3-7, 8-4
PAUSE 3-21, A-7
PRINT 4-2.1
PROGRAM 3-3
READ 4-18
RETURN 3-21
REWIND 4-16
SAVE 3-11, A-4
Statement function 3-13
STOP 3-21, A-7
SUBROUTINE 3-3
Type statement 3-5
Unconditional GO TO 3-19
WRITE 4-20

X - 15

INDEX

Static storage 3-11, 3-8,
7-9, A-4

STATISTICS compiler option 7-8

STATUS= (I/O option) 4-10,
4-12

STOP statement 3-21, A-7

Storage allocation statements
3-8

Storage class 3-8, 7-9, A-4

Storage class, determination of
3-3

Storage formats C-l

Storage lengths for data types
2-4

Storage options, compiler 7-9

Structure of a function 5-5

Structure of a subroutine 5-3

Subprogram 2-2

Subprograms as arguments 5-9

SUBROUTINE statement 3-3

Subroutines and functions 5-1

Subroutines:
Alternate returns from 5-3
Arguments to 5-3
As arguments 5-9
Execution of 5-1
Library 5-2
Recursion in 5-4
Referencing 5-1
Rules for 5-3
User-supplied 5-3

Substrings 2-8

Summaries, see syntax summaries

Suppress compiler error messages
7-7

Synonymous names 2-4

Syntax summaries:
Compiler options 7-13
I/O statements 4-35
Program specification

statements 3-22

T descriptor 4-33

Tables:
ASCII characters D-2, D-4
Compiler option abbreviations
7-13

Compiler option summary 7-13
Compiler options 7-4
Examples of B format 4-32
F77 program composition 2-16
File unit numbers 4-7
I/O statement syntax summary
4-5

INQUIRE statement options
4-13

Intrinsic functions 6-3
OPEN statement options 4-10
Physical device numbers 4-7
Storage formats C-l
Summary of specification
statement syntax 3-23

Type conversions at assignment
3-16

TAN intrinsic function 6-6

TANH intrinsic function 6-7

Terminal as a file 4-1

TL descriptor 4-33

TR descriptor 4-33

Type conversion:
Arithmetic 2-14, 3-15
Character 3-15
Logical 2-14, 3-15
Table of, 3-16
With internal files 4-3
With intrinsic functions 6-3

X - 16

INDEX

Type declaration 3-5

Type-statement 3-5

Type-statement, initialization in
3-6

Unconditional GO TO statement
3-19

Unformatted data transfer 4-18

Unformatted records 4-2

UNFORMATTED= (I/O option) 4-14

Unit, see File unit

UNIT= (I/O option) 4-10,
4-12, 4-13, 4-19

Unrepresentable values 4-21

Unshared libraries 4-4

Unsupported FTN constructs A-7

UPCASE compiler option 7-5

Upper-to-lower case 2-2, 7-5

Uppercase convention 1-10

Utilities for programmers 1-7

V-mode 7-10

Variable and array names 2-10

Variables 2-10

Varying length records 4-2

WRITE statement 4-20

X descriptor 4-29

XOR intrinsic function 6-7

XREF compiler option 7-6

X - 17

•jiKwuvifji.i*! i 'i mwminw mflarrpixir <*

	Front Cover
	Documentation Collection Summary
	Title Page
	i
	Copyright
	ii
	Contents
	iii
	iv
	Section 1
	Introduction
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	1-9
	1-10
	Section 2
	FORTRAN 77 Language Elements
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	Section 3
	Program Specification Statements
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	Section 4
	Input/Output Statements
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	Section 5
	Subroutines and Functions
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	Section 6
	Intrinsic Functions
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	Section 7
	Using the F77 Compiler
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	Section 8
	Optimizing F77 Programs
	8-1
	8-2
	8-3
	8-4
	8-5
	Appendix A
	Converting FTN Programs to F77
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	Appendix B
	F77 Programming Example
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	Appendix C
	Prime Memory Formats for F77 Data Types
	C-1
	C-2
	C-3
	C-4
	Appendix D
	ASCII Character Set
	D-1
	D-2
	D-3
	D-4
	D-5
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7
	X-8
	X-9
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	Back Cover

